def plot_relu_layer(input): num = 1 for channel in range(input.shape[-1]): result = input[:, :, channel] result = result.reshape(input.shape[0], input.shape[1]) ax = subplot(5, 2, num, frame_on=False) ax.xaxis.set_major_locator(NullLocator()) # remove ticks ax.yaxis.set_major_locator(NullLocator()) num += 1 plt.imshow(result, origin='upper') plt.title('channel #' + str(channel)) plt.tight_layout() plt.savefig('relu_activations.png')
]), color="green", lw=1, linestyle=lss[i], label=None if i else "env. friendly individuals") ax12.plot(t[3:], 100 * mean([ array(traj["SocialSystem.has_emissions_tax"][s][3:] * 1) for s in social_systems ], axis=0), color="cyan", lw=2, label="regions w/ emissions tax") ax12.set_ylim(-5, 105) ax12.yaxis.set_major_locator(NullLocator()) ax12.legend(loc=7) # metabolic for i, s in enumerate(social_systems): Es = array(traj["SocialSystem.secondary_energy_flow"][s][3:]) ax22.plot(t[3:], 100 * array(traj["SocialSystem.biomass_input_flow"][s][3:]) * 40e9 / Es, color="green", lw=lws, alpha=al, linestyle=lss[i], label=None if i else "biomass") ax22.plot(t[3:], 100 * array(traj["SocialSystem.fossil_fuel_input_flow"][s][3:]) *
color=(0, 0.25, 0)) else: text(1.8 * n - 2, 0.14 * t_numpy - 6e-6, label_numpy, horizontalalignment='right', size=11, color=(0, 0.25, 0)) from matplotlib.text import FontProperties for n, t_python, t_numpy, label_python, label_numpy in \ zip(sizes, time_python, time_numpy, labels_python, labels_numpy)[:-1]: make_mark(n, t_python, t_numpy, label_python, label_numpy) ax.xaxis.minor.locator = NullLocator() yticks((1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1), (u'10µs', u'100µs', u'1ms', u'10ms', u'100ms', u'1s')) ax.yaxis.tick_right() ax.yaxis.grid(alpha=0.4) for t in ax.xaxis.majorTicks: t.tick2line.set_visible(False) legend(loc='upper left', numpoints=1, prop=FontProperties(size=12)) text(2, 1e-6, 'n') ylabel(u"Temps d'éxécution") savefig('timings.eps')
A = imread('../data/shakira.png') # load an image A = mean(A, 2) # to get a 2-D array full_pc = size(A, axis=1) # numbers of all the principal components i = 1 dist = [] for numpc in range(0, full_pc + 10, 10): # 0 10 20 ... full_pc coeff, score, latent = princomp(A, numpc) Ar = dot(coeff, score).T + mean(A, axis=0) # image reconstruction # difference in Frobenius norm dist.append(linalg.norm(A - Ar, 'fro')) # showing the pics reconstructed with less than 50 PCs print "trying %s principal components with a distance of: %f" % (numpc, dist[-1]) if numpc <= 50: if numpc == 50: imsave(fname='../data/' + str(numpc) + '.jpg', arr=Ar) ax = subplot(2, 3, i, frame_on=False) ax.xaxis.set_major_locator(NullLocator()) # remove ticks ax.yaxis.set_major_locator(NullLocator()) i += 1 imshow(Ar) title('PCs # ' + str(numpc)) gray() figure() imshow(A) title('numpc FULL') gray() show()
10): # 0 10 20 ... full_pc + 10 sayısı içinde döngü coeff, score, latent = princomp(A, numpc) Ar = dot(coeff, score).T + mean(A, axis=0) # imajı tekrar yapılandırma # Frobenius normdaki farklılık dist.append(linalg.norm(A - Ar, 'fro')) # temel bileşenlerle yeniden yapılandırılan imajları göster # 50'den az olan temel bileşenler kullanılmıştır if numpc <= 50: ax = subplot(2, 3, i, frame_on=False) ax.xaxis.set_major_locator(NullLocator()) ax.yaxis.set_major_locator(NullLocator()) i += 1 plt.imshow(Ar) title('PCs # ' + str(numpc)) gray() figure() imshow(A) title('numpc FULL') gray() show() from pylab import plot, axis