Exemple #1
0
def main():
    import copy
    from boost.mpi import world
    import numpy
    from pylada.ga import darwin as dd, bitstring, standard, ce

    class Darwin:
        pass

    def stop_at_zero(self):
        for indiv in self.population:
            if indiv.fitness == 0e0:
                return False
        return True

    bitstring.Individual.size = 80
    darwin = Darwin()
    darwin.comm = world
    darwin.comm.do_print = darwin.comm.rank == 0

    evaluation = Eval()
    evaluation.target = numpy.array([1 for u in xrange(bitstring.Individual.size)])
    if darwin.comm.do_print:
        print "Target: ", evaluation.target

    darwin.evaluation = standard.mpi_population_evaluation(darwin, evaluation)

    def print_nb_eval(darwin):
        if not darwin.comm.do_print:
            return True
        print "Number of functional evaluations: ", evaluation.nbevals
        return True

    darwin.checkpoints = [
        standard.print_offspring,
        standard.average_fitness,
        standard.best,
        print_nb_eval,
        stop_at_zero,
    ]

    mating = standard.Mating(sequential=False)
    mating.add(bitstring.Crossover(rate=0.25), rate=0.8)
    mating.add(bitstring.Mutation(rate=3e0 / float(bitstring.Individual.size)), rate=0.2)

    darwin.mating = standard.bound_method(darwin, standard.Mating(sequential=True))
    darwin.mating.add(mating, rate=0.8)

    darwin.taboo = standard.bound_method(darwin, standard.Taboo(diversity=True))

    darwin.rate = 0.1
    darwin.popsize = 100
    darwin.max_gen = 300

    dd.run(darwin)
Exemple #2
0
def  main():
  from pylada.ga import darwin as dd, bitstring, standard, ce
  from pylada import crystal
  import boost.mpi
  import numpy
  import copy

  # evaluation class which keeps tracks of the number of calls.
  class Eval(ce.EvalFitPairs):
    def __init__(self, *args, **kwargs):
      ce.EvalFitPairs.__init__(self, *args, **kwargs)
      self.nbevals = 0

    def __call__(self, indiv):
      self.nbevals += 1
      return ce.EvalFitPairs.__call__(self, indiv)

  class PrintNbEvals:
    def __init__(self, evaluation): 
      self.evaluation = evaluation
    def __call__(self, darwin):
      print "Number of functional evaluations: ", self.evaluation.nbevals
      return True

  # creates  lattice
  lattice = crystal.Lattice("data/lattice.xml")


  # the evaluations (CE fitting) class.
  evaluation = Eval( lattice=lattice,
                     path = "data",
                     lmo_ratio=0.3333333, 
                     pairs = (5, 20, 5),
                     B3=9, B4=5, B5=2, B6=2)

  # the darwin class holding all ga parameters.
  class Darwin: pass
  darwin = Darwin()


  # size of the individuals.
  ce.Individual.size = len(evaluation)
  # Maximum number of bits when initializing individuals.
  ce.Individual.max_mbs_oninit = min(ce.Individual.size, 15)

  darwin.Individual = ce.Individual

  darwin.evaluation = standard.population_evaluation( darwin, evaluation )
  darwin.checkpoints = [ standard.print_offspring, 
                         standard.average_fitness,
                         standard.best,
                         PrintNbEvals(evaluation) ]

  mating = standard.Mating(sequential=False)
  mating.add( ce.SetOver(rate=0.5, inclusive=True), rate=1 )
  mating.add( bitstring.Crossover(rate=0.5), rate=1 )
  mating.add( bitstring.Mutation(rate=2e0/float(ce.Individual.size)), rate=0.2 )

  darwin.mating = standard.bound_method(darwin, standard.Mating(sequential=True))
  darwin.mating.add( mating, rate=0.9 )
  itermax = 20 # int( float(len(evaluation)) * 1.5 )
  darwin.mating.add( bitstring.LocalSearch(evaluation, darwin, itermax=itermax), rate=0.8 )

  darwin.taboo = standard.bound_method(darwin, standard.Taboo(diversity=True))
  darwin.taboo.add( ce.Taboo(maxmbs=15) ) # constrains to less than maxmbs+1 manybodies

  darwin.rate   = 0.2
  darwin.popsize = 20
  darwin.max_gen = 3000

  dd.run(darwin)