def run(self): structure = self.search.run(self.steps) self.ui.log.append("Lowest energy found: "+str(structure.energy)) if (isinstance(structure.lattice, SquareLattice)): plot_2d(structure, self.ui.widget.canvas.fig) else: plot_3d(structure, self.ui.widget.canvas.fig) self.ui.widget.canvas.draw() plot_contact_map(structure, self.ui.widget_2.canvas.fig) self.ui.widget_2.canvas.draw()
def test_multidomain(self): structure=random_avoid(20, CubicLattice(), chain_list=[10,10]) self.assertIsNotNone(plot_3d(structure)) self.assertIsNotNone(plot_contact_map(structure))
''' A Monte Carlo search on a multidomain protein. @author: Mark Oakley ''' from pylatt.model import MJ from pylatt.lattice import FCCLattice from pylatt.plotter import plot_3d from pylatt.search import MonteCarlo import matplotlib.pyplot as plt '''To search a multidomain protein, set up a termini list. This should contain the indices of the ends of each peptide chain. The example here sets up two 9-residue peptides.''' model = MJ("LMVGGVVIALMVGGVVIA") chain_list = [9, 9] lattice = FCCLattice() search = MonteCarlo(lattice, model, chain_list) structure = search.run(100) plot_3d(structure) plt.show()
def test_3d(self): structure=random_avoid(150, CubicLattice()) self.assertIsNotNone(plot_3d(structure))