Exemple #1
0
def save_best_history(model, trainer):
    global monitor_save_best
    global test_monitor
    global prev_nll
    monitor_save_best.on_monitor(
        model, trainer.monitoring_dataset['valid'], trainer)
    nll = monitor.read_channel(model, 'test_y_nll') + 0
    test_monitor.append(
        (nll, monitor.read_channel(model, 'test_y_misclass'))
    )
    if nll < prev_nll:
        f = open('best.pkl', 'wb')
        pk.dump(model, f, protocol=pk.HIGHEST_PROTOCOL)
        f.close()
    f = open('monitor.pkl', 'wb')
    pk.dump(test_monitor, f, protocol=pk.HIGHEST_PROTOCOL)
    f.close()
def main(job_id, requested_params, cache):
    # Fix sub directory problems
    sys.path.append(os.path.dirname(os.getcwd()))
    os.chdir(os.path.dirname(os.path.realpath(__file__)))

    # Add parameters that are not currently being tuned but could potentially be tuned.
    params = additional_args
    params.update(requested_params)

    if params.get('rate', None) is not None:
        params['log_init_learning_rate'][0] = numpy.array([params['rate']])

    train_params = {
        'train_start': params['start'],
        'train_stop': params['stop'],
        'valid_start': 20000,
        'valid_stop': 24000,
        'test_stop': 4000,
        'batch_size': 100,
        'max_epochs': 20,
        'max_batches': 10,
        'sgd_seed': sgd_seed_str,
        'mlp_seed': mlp_seed_str,
        'weight_decay_y': math.pow(10, params['l_wdecay_y'][0]),
        'max_col_norm_y': params['max_norm_y'][0],
        'irange_y': math.pow(10, params['l_ir_y'][0]),
        'init_momentum': 0.5,
        'init_learning_rate': math.pow(10,
                                       params['log_init_learning_rate'][0]),
    }

    with open('slp_fooddata.yaml', 'r') as f:
        trainer = f.read()

    yaml_string = trainer % train_params
    train_obj = yaml_parse.load(yaml_string)

    pretrained_model_path = params.get('model', None)
    if pretrained_model_path is not None:
        print 'loading pre trained model'
        pretrained_model = serial.load(pretrained_model_path)
        print 'loading done'
        train_obj.model.set_param_values(pretrained_model.get_param_values())

    if 'converge' in params:
        train_obj.algorithm.termination_criterion._criteria[
            0]._max_epochs = 100
        train_obj.extensions.append(
            MonitorBasedSaveBest('valid_y_misclass', params['save']))

    train_obj.setup()
    train_obj.model.monitor.on_channel_conflict = 'ignore'
    if 'converge' not in params:
        train_obj.algorithm.termination_criterion._criteria[0].initialize(
            train_obj.model)
    train_obj.main_loop(do_setup=False)
    original_misclass = read_channel(train_obj.model, misclass_channel)
    return float(original_misclass)
def main(job_id, requested_params, cache):
    # Fix sub directory problems
    sys.path.append(os.path.dirname(os.getcwd()))
    os.chdir(os.path.dirname(os.path.realpath(__file__)))

    # Add parameters that are not currently being tuned but could potentially be tuned.
    params = additional_args
    params.update(requested_params)

    if params.get('rate', None) is not None:
        params['log_init_learning_rate'][0] = numpy.array([params['rate']])

    train_params = {
        'train_start': params['start'],
        'train_stop': params['stop'],
        'valid_start': 20000,
        'valid_stop': 24000,
        'test_stop': 4000,
        'batch_size': 100,
        'max_epochs': 20,
        'max_batches': 10,
        'sgd_seed': sgd_seed_str,
        'mlp_seed': mlp_seed_str,

        'weight_decay_y': math.pow(10, params['l_wdecay_y'][0]),
        'max_col_norm_y': params['max_norm_y'][0],
        'irange_y': math.pow(10, params['l_ir_y'][0]),
        'init_momentum': 0.5,
        'init_learning_rate': math.pow(10, params['log_init_learning_rate'][0]),
    }

    with open('slp_fooddata.yaml', 'r') as f:
        trainer = f.read()

    yaml_string = trainer % train_params
    train_obj = yaml_parse.load(yaml_string)

    pretrained_model_path = params.get('model', None)
    if pretrained_model_path is not None:
        print 'loading pre trained model'
        pretrained_model = serial.load(pretrained_model_path)
        print 'loading done'
        train_obj.model.set_param_values(pretrained_model.get_param_values())

    if 'converge' in params:
        train_obj.algorithm.termination_criterion._criteria[0]._max_epochs = 100
        train_obj.extensions.append(MonitorBasedSaveBest('valid_y_misclass', params['save']))

    train_obj.setup()
    train_obj.model.monitor.on_channel_conflict = 'ignore'
    if 'converge' not in params:
        train_obj.algorithm.termination_criterion._criteria[0].initialize(train_obj.model)
    train_obj.main_loop(do_setup=False)
    original_misclass = read_channel(train_obj.model, misclass_channel)
    return float(original_misclass)
def main(job_id, requested_params, cache):
    # Fix sub directory problems
    sys.path.append(os.path.dirname(os.getcwd()))
    os.chdir(os.path.dirname(os.path.realpath(__file__)))

    # Add parameters that are not currently being tuned but could potentially be tuned.
    params = additional_args
    params.update(requested_params)

    if params['kernel_config'][0] == 'a':
        output_channels_h2 = int(2.89 * 100)
        output_channels_h3 = int(1.70 * 100)
        output_channels_h4 = int(1.00 * 100)
    elif params['kernel_config'][0] == 'b':
        output_channels_h2 = int(1.00 * 100)
        output_channels_h3 = int(1.70 * 100)
        output_channels_h4 = int(2.89 * 100)
    elif params['kernel_config'][0] == 'c':
        output_channels_h2 = int(1.00 * 50)
        output_channels_h3 = int(3.42 * 50)
        output_channels_h4 = int(11.67 * 50)
    elif params['kernel_config'][0] == 'd':
        output_channels_h2 = int(11.67 * 50)
        output_channels_h3 = int(3.42 * 50)
        output_channels_h4 = int(1.00 * 50)
    else:
        raise RuntimeError('Unknown kernel config')

    if params.get('rate', None) is not None:
        params['log_init_learning_rate'][0] += numpy.array([params['rate']])
    print params['log_init_learning_rate'][0]

    fixed_params = (params['kernel_size_h2'][0], params['kernel_size_h3'][0], params['kernel_config'][0])
    if 'cached_trainer' + str(fixed_params) not in cache:
        train_params = {
            'train_start': params['start'],
            'train_stop': params['stop'],
            'valid_start': 20000,
            'valid_stop': 24000,
            'test_stop': 4000,
            'batch_size': 100,
            'max_epochs': params.get('epochs', 1),
            'max_batches': 10,
            'sgd_seed': sgd_seed_str,
            'mlp_seed': mlp_seed_str,

            'kernel_size_h2': int(params['kernel_size_h2'][0]),
            'output_channels_h2': output_channels_h2,
            'irange_h2': math.pow(10, params['l_ir_h2'][0]),
            'max_kernel_norm_h2': params['max_norm_h2'][0],

            'kernel_size_h3': int(params['kernel_size_h3'][0]),
            'output_channels_h3': output_channels_h3,
            'irange_h3': math.pow(10, params['l_ir_h3'][0]),
            'max_kernel_norm_h3': params['max_norm_h3'][0],

            'kernel_size_h4': int(params['kernel_size_h4'][0]),
            'output_channels_h4': output_channels_h4,
            'irange_h4': math.pow(10, params['l_ir_h4'][0]),
            'max_kernel_norm_h4': params['max_norm_h4'][0],

            'weight_decay_h2': math.pow(10, params['l_wdecay_h2'][0]),
            'weight_decay_h3': math.pow(10, params['l_wdecay_h3'][0]),
            'weight_decay_h4': math.pow(10, params['l_wdecay_h4'][0]),
            'weight_decay_y': math.pow(10, params['l_wdecay_y'][0]),
            'max_col_norm_y': params['max_norm_y'][0],
            'irange_y': math.pow(10, params['l_ir_y'][0]),
            'init_learning_rate': math.pow(10, params['log_init_learning_rate'][0]),
            'init_momentum': params['init_momentum'][0],
            'rectifier_left_slope': 0.2
        }

        with open('conv_fooddata_spearmint.yaml', 'r') as f:
            trainer = f.read()

        yaml_string = trainer % train_params
        train_obj = yaml_parse.load(yaml_string)

        if 'converge' in params:
            train_obj.algorithm.termination_criterion._criteria[0]._max_epochs = params.get('epochs', 100)
            train_obj.extensions.append(MonitorBasedSaveBest('valid_y_misclass', params['save']))

        train_obj.setup()
        train_obj.model.monitor.on_channel_conflict = 'ignore'
        # cache['cached_trainer' + str(fixed_params)] = train_obj

    else:
        train_obj = cache['cached_trainer' + str(fixed_params)]
        train_obj.model.monitor.set_state([0, 0, 0])
        train_obj.model.training_succeeded = False
        # train_obj.algorithm.update_callbacks[0].reinit_from_monitor()

        model = train_obj.model
        model_params = dict([(param.name, param) for param in model.get_params()])

        rng = model.rng

        update_conv_layer(model.layers[0], params['l_ir_h2'][0], params['max_norm_h2'][0], model_params, rng)
        update_conv_layer(model.layers[1], params['l_ir_h3'][0], params['max_norm_h3'][0], model_params, rng)
        update_conv_layer(model.layers[2], params['l_ir_h4'][0], params['max_norm_h4'][0], model_params, rng)
        update_softmax_layer(model.layers[3], params['l_ir_y'][0], params['max_norm_y'][0], model_params, rng)

        train_obj.algorithm.learning_rate.set_value(
                math.pow(10, params['log_init_learning_rate'][0].astype(numpy.float32)))
        train_obj.algorithm.learning_rule.momentum.set_value(params['init_momentum'][0].astype(numpy.float32))
        pass

    pretrained_model_path = params.get('model', None)
    if pretrained_model_path is not None:
        print 'loading pre trained model'
        pretrained_model = serial.load(pretrained_model_path)
        print 'loading done'
        train_obj.model.set_param_values(pretrained_model.get_param_values())

    if 'converge' not in params:
        train_obj.algorithm.termination_criterion._criteria[0].initialize(train_obj.model)
    train_obj.main_loop(do_setup=False)
    if params.get('savelast', False):
        serial.save(params['save'] + 'f', train_obj.model, on_overwrite='backup')
    original_misclass = read_channel(train_obj.model, misclass_channel)
    return float(original_misclass) * 50
Exemple #5
0
def main(job_id, requested_params, cache):
    # Fix sub directory problems
    sys.path.append(os.path.dirname(os.getcwd()))
    os.chdir(os.path.dirname(os.path.realpath(__file__)))

    # Add parameters that are not currently being tuned but could potentially be tuned.
    params = additional_args
    params.update(requested_params)

    output_channels_h2 = int(1.00 * 50)
    output_channels_h3 = int(3.42 * 50)
    output_channels_h4 = int(11.67 * 50)

    dropout_h2 = float(params['dropout_h2'][0]) / 10
    dropout_h3 = float(params['dropout_h3'][0]) / 10
    dropout_h4 = float(params['dropout_h4'][0]) / 10
    dropout_y = float(params['dropout_y'][0]) / 10

    if params.get('rate', None) is not None:
        params['log_init_learning_rate'][0] += numpy.array([params['rate']])

    fixed_params = (params['kernel_size_h2'][0], params['kernel_size_h3'][0], params['dropout_h2'][0],
                    params['dropout_h3'][0], params['dropout_h4'][0], params['dropout_y'][0])

    if 'cached_trainer' + str(fixed_params) not in cache:
        train_params = {
            'train_start': params['start'],
            'train_stop': params['stop'],
            'valid_start': 20000,
            'valid_stop': 24000,
            'test_stop': 4000,
            'batch_size': 100,
            'max_epochs': params.get('epochs', 1),
            'max_batches': 50,
            'sgd_seed': sgd_seed_str,
            'mlp_seed': mlp_seed_str,

            'kernel_size_h2': int(params['kernel_size_h2'][0]),
            'output_channels_h2': output_channels_h2,
            'irange_h2': math.pow(10, params['l_ir_h2'][0]),
            'max_kernel_norm_h2': params['max_norm_h2'][0],
            'dropout_h2': dropout_h2,
            'dscale_h2': params['dfac_h2'][0] * 1.0 / dropout_h2,
            'w_lr_sc_h2': math.pow(dropout_h2, 2),
            'weight_decay_h2': math.pow(10, params['l_wdecay_h2'][0]),

            'kernel_size_h3': int(params['kernel_size_h3'][0]),
            'output_channels_h3': output_channels_h3,
            'irange_h3': math.pow(10, params['l_ir_h3'][0]),
            'max_kernel_norm_h3': params['max_norm_h3'][0],
            'dropout_h3': dropout_h3,
            'dscale_h3': params['dfac_h3'][0] * 1.0 / dropout_h3,
            'w_lr_sc_h3': math.pow(dropout_h3, 2),
            'weight_decay_h3': math.pow(10, params['l_wdecay_h3'][0]),

            'kernel_size_h4': int(params['kernel_size_h4'][0]),
            'output_channels_h4': output_channels_h4,
            'irange_h4': math.pow(10, params['l_ir_h4'][0]),
            'max_kernel_norm_h4': params['max_norm_h4'][0],
            'dropout_h4': dropout_h4,
            'dscale_h4': params['dfac_h4'][0] * 1.0 / dropout_h4,
            'w_lr_sc_h4': math.pow(dropout_h4, 2),
            'weight_decay_h4': math.pow(10, params['l_wdecay_h4'][0]),

            'weight_decay_y': math.pow(10, params['l_wdecay_y'][0]),
            'max_col_norm_y': params['max_norm_y'][0],
            'irange_y': math.pow(10, params['l_ir_y'][0]),
            'dropout_y': dropout_y,
            'dscale_y': 1.0 / dropout_y,
            'w_lr_sc_y': math.pow(dropout_y, 2),
            'init_learning_rate': math.pow(10, params['log_init_learning_rate'][0]),
            'init_momentum': params['init_momentum'][0],
            'rectifier_left_slope': 0.2
        }

        with open('conv_fooddata_spearmint.yaml', 'r') as f:
            trainer = f.read()

        yaml_string = trainer % train_params
        train_obj = yaml_parse.load(yaml_string)

        if 'converge' in params:
            train_obj.algorithm.termination_criterion._criteria[0]._max_epochs = params.get('epochs', 100)
            train_obj.extensions.append(MonitorBasedSaveBest('valid_y_misclass', params['save']))

        train_obj.setup()
        train_obj.model.monitor.on_channel_conflict = 'ignore'
        # cache['cached_trainer' + str(fixed_params)] = train_obj

    else:
        train_obj = cache['cached_trainer' + str(fixed_params)]
        train_obj.model.monitor.set_state([0, 0, 0])
        train_obj.model.training_succeeded = False
        # train_obj.algorithm.update_callbacks[0].reinit_from_monitor()

        model = train_obj.model
        model_params = dict([(param.name, param) for param in model.get_params()])

        rng = model.rng

        update_conv_layer(model.layers[0], params['l_ir_h2'][0], params['max_norm_h2'][0], model_params, rng)
        update_conv_layer(model.layers[1], params['l_ir_h3'][0], params['max_norm_h3'][0], model_params, rng)
        update_conv_layer(model.layers[2], params['l_ir_h4'][0], params['max_norm_h4'][0], model_params, rng)
        update_softmax_layer(model.layers[3], params['l_ir_y'][0], params['max_norm_y'][0], model_params, rng)

        train_obj.algorithm.learning_rate.set_value(
                math.pow(10, params['log_init_learning_rate'][0].astype(numpy.float32)))
        train_obj.algorithm.learning_rule.momentum.set_value(params['init_momentum'][0].astype(numpy.float32))
        pass

    pretrained_model_path = params.get('model', None)
    if pretrained_model_path is not None:
        print 'loading pre trained model'
        pretrained_model = serial.load(pretrained_model_path)
        print 'loading done'
        train_obj.model.set_param_values(pretrained_model.get_param_values())

    if 'converge' not in params:
        train_obj.algorithm.termination_criterion._criteria[0].initialize(train_obj.model)
    train_obj.main_loop(do_setup=False)
    if params.get('savelast', False):
        serial.save(params['save'] + 'f', train_obj.model, on_overwrite='backup')
    original_misclass = read_channel(train_obj.model, misclass_channel)
    return float(original_misclass) * 50
def main(job_id, params, cache):
    # Fix sub directory problems
    sys.path.append(os.path.dirname(os.getcwd()))
    os.chdir(os.path.dirname(os.path.realpath(__file__)))

    # Add parameters that are not currently being tuned but could potentially be tuned.
    params.update(additional_args)

    dropout_h2 = float(params['dropout_h2'][0]) / 10
    dropout_h3 = float(params['dropout_h3'][0]) / 10
    dropout_h4 = float(params['dropout_h4'][0]) / 10
    dropout_y = float(params['dropout_y'][0]) / 10
    fixed_params = (params['kernel_size_h2'][0], params['kernel_size_h3'][0], params['dropout_h2'][0],
                    params['dropout_h3'][0], params['dropout_h4'][0], params['dropout_y'][0])
    if 'cached_trainer' + str(fixed_params) not in cache:
        train_params = {
            'train_stop': 20000,
            'valid_stop': 24000,
            'test_stop': 4000,
            'batch_size': 100,
            'max_epochs': 1,
            'max_batches': 50,
            'sgd_seed': sgd_seed_str,
            'mlp_seed': mlp_seed_str,
            'save_file': 'result',

            'kernel_size_h2': int(params['kernel_size_h2'][0]),
            'output_channels_h2': 1 * k,
            'irange_h2': math.pow(10, params['l_ir_h2'][0]),
            'max_kernel_norm_h2': params['max_norm_h2'][0],
            'dropout_h2': dropout_h2,
            'dscale_h2': 1.0 / dropout_h2,
            'w_lr_sc_h2': math.pow(dropout_h2, 2),
            'weight_decay_h2': math.pow(10, params['l_wdecay_h2'][0]),

            'kernel_size_h3': int(params['kernel_size_h3'][0]),
            'output_channels_h3': int(1.7 * k),
            'irange_h3': math.pow(10, params['l_ir_h3'][0]),
            'max_kernel_norm_h3': params['max_norm_h3'][0],
            'dropout_h3': dropout_h3,
            'dscale_h3': 1.0 / dropout_h3,
            'w_lr_sc_h3': math.pow(dropout_h3, 2),
            'weight_decay_h3': math.pow(10, params['l_wdecay_h3'][0]),

            'kernel_size_h4': int(params['kernel_size_h4'][0]),
            'output_channels_h4': int(2.5 * k),
            'irange_h4': math.pow(10, params['l_ir_h4'][0]),
            'max_kernel_norm_h4': params['max_norm_h4'][0],
            'dropout_h4': dropout_h4,
            'dscale_h4': 1.0 / dropout_h4,
            'w_lr_sc_h4': math.pow(dropout_h4, 2),
            'weight_decay_h4': math.pow(10, params['l_wdecay_h4'][0]),

            'weight_decay_y': math.pow(10, params['l_wdecay_y'][0]),
            'max_col_norm_y': params['max_norm_y'][0],
            'irange_y': math.pow(10, params['l_ir_y'][0]),
            'dropout_y': dropout_y,
            'dscale_y': 1.0 / dropout_y,
            'w_lr_sc_y': math.pow(dropout_y, 2),
            'init_learning_rate': math.pow(10, params['log_init_learning_rate'][0]),
            'init_momentum': params['init_momentum'][0],
            'rectifier_left_slope': 0.2
        }

        with open('conv_fooddata_spearmint.yaml', 'r') as f:
            trainer = f.read()

        yaml_string = trainer % train_params
        train_obj = yaml_parse.load(yaml_string)

        if 'converge' in params:
            del train_obj.algorithm.termination_criterion._criteria[:]
            train_obj.extensions.append(MonitorBasedSaveBest('valid_y_misclass', 'best_model.pkl'))

        train_obj.setup()
        train_obj.model.monitor.on_channel_conflict = 'ignore'
        # cache['cached_trainer' + str(fixed_params)] = train_obj

    else:
        train_obj = cache['cached_trainer' + str(fixed_params)]
        train_obj.model.monitor.set_state([0, 0, 0])
        train_obj.model.training_succeeded = False
        # train_obj.algorithm.update_callbacks[0].reinit_from_monitor()

        model = train_obj.model
        model_params = dict([(param.name, param) for param in model.get_params()])

        rng = model.rng

        update_conv_layer(model.layers[0], params['l_ir_h2'][0], params['max_norm_h2'][0], model_params, rng)
        update_conv_layer(model.layers[1], params['l_ir_h3'][0], params['max_norm_h3'][0], model_params, rng)
        update_conv_layer(model.layers[2], params['l_ir_h4'][0], params['max_norm_h4'][0], model_params, rng)
        update_softmax_layer(model.layers[3], params['l_ir_y'][0], params['max_norm_y'][0], model_params, rng)

        train_obj.algorithm.learning_rate.set_value(
                math.pow(10, params['log_init_learning_rate'][0].astype(numpy.float32)))
        train_obj.algorithm.learning_rule.momentum.set_value(params['init_momentum'][0].astype(numpy.float32))
        pass

    if 'converge' not in params:
        train_obj.algorithm.termination_criterion._criteria[0].initialize(train_obj.model)
    train_obj.main_loop(do_setup=False)
    original_misclass = read_channel(train_obj.model, misclass_channel)
    return float(original_misclass) * 50
Exemple #7
0
def main(job_id, params, cache):
    # Fix sub directory problems
    sys.path.append(os.path.dirname(os.getcwd()))
    os.chdir(os.path.dirname(os.path.realpath(__file__)))

    # Add parameters that are not currently being tuned but could potentially be tuned.
    params.update(additional_args)

    fixed_params = (params['kernel_size_h2'][0], params['kernel_size_h3'][0])
    if 'cached_trainer' + str(fixed_params) not in cache:
        train_params = {
            'train_stop': 20000,
            'valid_stop': 24000,
            'test_stop': 4000,
            'batch_size': 100,
            'max_epochs': 1,
            'max_batches': 10,
            'sgd_seed': sgd_seed_str,
            'mlp_seed': mlp_seed_str,
            'save_file': 'result',

            'kernel_size_h2': int(params['kernel_size_h2'][0]),
            'output_channels_h2': 1 * k,
            'irange_h2': math.pow(10, params['l_ir_h2'][0]),
            'max_kernel_norm_h2': params['max_norm_h2'][0],

            'kernel_size_h3': int(params['kernel_size_h3'][0]),
            'output_channels_h3': int(1.7 * k),
            'irange_h3': math.pow(10, params['l_ir_h3'][0]),
            'max_kernel_norm_h3': params['max_norm_h3'][0],

            'kernel_size_h4': int(params['kernel_size_h4'][0]),
            'output_channels_h4': int(2.5 * k),
            'irange_h4': math.pow(10, params['l_ir_h4'][0]),
            'max_kernel_norm_h4': params['max_norm_h4'][0],

            'weight_decay_h2': math.pow(10, params['l_wdecay_h2'][0]),
            'weight_decay_h3': math.pow(10, params['l_wdecay_h3'][0]),
            'weight_decay_h4': math.pow(10, params['l_wdecay_h4'][0]),
            'weight_decay_y': math.pow(10, params['l_wdecay_y'][0]),
            'max_col_norm_y': params['max_norm_y'][0],
            'irange_y': math.pow(10, params['l_ir_y'][0]),
            'init_learning_rate': math.pow(10, params['log_init_learning_rate'][0]),
            'init_momentum': params['init_momentum'][0],
            'rectifier_left_slope': 0.2
        }

        with open('conv_fooddata_spearmint.yaml', 'r') as f:
            trainer = f.read()

        yaml_string = trainer % train_params
        train_obj = yaml_parse.load(yaml_string)

        if 'converge' in params:
            del train_obj.algorithm.termination_criterion._criteria[:]
            train_obj.extensions.append(MonitorBasedSaveBest('valid_y_misclass', 'best_model.pkl'))

        train_obj.setup()
        train_obj.model.monitor.on_channel_conflict = 'ignore'
        cache['cached_trainer' + str(fixed_params)] = train_obj

    else:
        train_obj = cache['cached_trainer' + str(fixed_params)]
        train_obj.model.monitor.set_state([0, 0, 0])
        train_obj.model.training_succeeded = False
        # train_obj.algorithm.update_callbacks[0].reinit_from_monitor()

        model = train_obj.model
        model_params = dict([(param.name, param) for param in model.get_params()])

        rng = model.rng

        update_conv_layer(model.layers[0], params['l_ir_h2'][0], params['max_norm_h2'][0], model_params, rng)
        update_conv_layer(model.layers[1], params['l_ir_h3'][0], params['max_norm_h3'][0], model_params, rng)
        update_conv_layer(model.layers[2], params['l_ir_h4'][0], params['max_norm_h4'][0], model_params, rng)
        update_softmax_layer(model.layers[3], params['l_ir_y'][0], params['max_norm_y'][0], model_params, rng)

        train_obj.algorithm.learning_rate.set_value(
                math.pow(10, params['log_init_learning_rate'][0].astype(numpy.float32)))
        train_obj.algorithm.learning_rule.momentum.set_value(params['init_momentum'][0].astype(numpy.float32))
        pass

    if 'converge' not in params:
        train_obj.algorithm.termination_criterion._criteria[0].initialize(train_obj.model)
    train_obj.main_loop(do_setup=False)
    original_misclass = read_channel(train_obj.model, misclass_channel)
    return float(original_misclass) * 50