def setUp(self): skip_if_no_h5py() import h5py skip_if_no_data() from pylearn2.datasets.mnist import MNIST # save MNIST data to HDF5 train = MNIST(which_set='train', one_hot=1, start=0, stop=100) for name, dataset in [('train', train)]: with h5py.File("{}.h5".format(name), "w") as f: f.create_dataset('X', data=dataset.get_design_matrix()) f.create_dataset('topo_view', data=dataset.get_topological_view()) f.create_dataset('y', data=dataset.get_targets()) # instantiate Train object self.train = yaml_parse.load(trainer_yaml)
def test_hdf5_convert_to_one_hot(): """Train using an HDF5 dataset with one-hot target conversion.""" skip_if_no_h5py() import h5py # save random data to HDF5 handle, filename = tempfile.mkstemp() dataset = random_dense_design_matrix(np.random.RandomState(1), num_examples=10, dim=5, num_classes=3) with h5py.File(filename, 'w') as f: f.create_dataset('X', data=dataset.get_design_matrix()) f.create_dataset('y', data=dataset.get_targets()) # instantiate Train object trainer = yaml_parse.load(convert_to_one_hot_yaml % {'filename': filename}) trainer.main_loop() # cleanup os.remove(filename)
def test_hdf5_topo_view(): """Train using an HDF5 dataset with topo_view instead of X.""" skip_if_no_h5py() import h5py # save random data to HDF5 handle, filename = tempfile.mkstemp() dataset = random_one_hot_topological_dense_design_matrix( np.random.RandomState(1), num_examples=10, shape=(2, 2), channels=3, axes=('b', 0, 1, 'c'), num_classes=3) with h5py.File(filename, 'w') as f: f.create_dataset('topo_view', data=dataset.get_topological_view()) f.create_dataset('y', data=dataset.get_targets()) # instantiate Train object trainer = yaml_parse.load(topo_view_yaml % {'filename': filename}) trainer.main_loop() # cleanup os.remove(filename)
def test_hdf5_load_all(): """Train using an HDF5 dataset with all data loaded into memory.""" skip_if_no_h5py() import h5py # save random data to HDF5 handle, filename = tempfile.mkstemp() dataset = random_one_hot_dense_design_matrix(np.random.RandomState(1), num_examples=10, dim=5, num_classes=3) with h5py.File(filename, 'w') as f: f.create_dataset('X', data=dataset.get_design_matrix()) f.create_dataset('y', data=dataset.get_targets()) # instantiate Train object trainer = yaml_parse.load(load_all_yaml % {'filename': filename}) trainer.main_loop() # cleanup os.remove(filename)