background_color="white", colormap="tab20").generate_from_frequencies(frequencies) plt.clf() plt.figure(figsize=(hsize, vsize)) plt.imshow(cloud, interpolation='bilinear', aspect="equal") plt.axis("off") plt.tight_layout() plt.savefig(name + ".pdf", figsize=(5, vsize), dpi=400) from scipy.misc import imsave imsave(name + '.png', cloud) if __name__ == '__main__': parser = argparse.ArgumentParser() arg(parser, 'name', type=str, default="", help='name for plots') arg(parser, 'raw', type=bool, default=True, help='Use raw vectors rather than UMAP ones.') arg(parser, 'alpha', type=float, default=1., help='Float for alpha in divergence.') arg(parser, 'rbf', type=bool, default=False, help='Use RBF rather than cosine similarity.')
import argparse import glob import os import torch from pylego.misc import add_argument as arg from runners.fixedrunner import FixedRunner from runners.advrunner import AdversarialRunner if __name__ == '__main__': parser = argparse.ArgumentParser() arg(parser, 'name', type=str, required=True, help='name of the experiment') arg(parser, 'model', type=str, default='fixed.fixed', help='model to use') arg(parser, 'cuda', type=bool, default=True, help='enable CUDA') arg(parser, 'double_precision', type=bool, default=False, help='use double precision') arg(parser, 'load_file', type=str, default='', help='file to load model from') arg(parser, 'save_file', type=str, default='model.dat', help='model save file')
import argparse import os from pylego.misc import add_argument as arg from runners.tdvaerunner import TDVAERunner if __name__ == '__main__': parser = argparse.ArgumentParser() arg(parser, 'name', type=str, required=True, help='name of the experiment') arg(parser, 'model', type=str, default='tdvae.tdvae', help='model to use') arg(parser, 'cuda', type=bool, default=True, help='enable CUDA') arg(parser, 'load_file', type=str, default='', help='file to load model from') arg(parser, 'save_file', type=str, default='model.dat', help='model save file') arg(parser, 'save_every', type=int, default=500, help='save every these many global steps (-1 to disable saving)') arg(parser, 'data_path', type=str, default='data/MNIST') arg(parser, 'logs_path', type=str, default='logs') arg(parser, 'force_logs', type=bool, default=False) arg(parser, 'optimizer', type=str, default='adam', help='one of: adam')
import argparse import glob import os from shutil import copyfile import sys from pylego.misc import add_argument as arg if __name__ == '__main__': parser = argparse.ArgumentParser() arg(parser, 'logs_path', type=str, default='../logs', help='input logs directory') arg(parser, 'out_path', type=str, default='out', help='output directory') arg(parser, 'name_pattern', type=str, default='*', help='names to match in logs directory') arg(parser, 'step', type=int, default=-1, help='override comparison step if greater than 0') arg(parser, 'min_step', type=int, default=-1, help='minimum step to dump if greater than 0')
import argparse import os from pylego.misc import add_argument as arg from runners.imgtdvae.tdvaerunner import TDVAERunner from runners.conditional.gym_runner import GymRunner from runners.rl.rl_runner import GymRLRunner if __name__ == '__main__': parser = argparse.ArgumentParser() arg(parser, 'name', type=str, required=True, help='name of the experiment') arg(parser, 'model', type=str, default='conditional.gymtdvae', help='model to use') arg(parser, 'cuda', type=bool, default=True, help='enable CUDA') arg(parser, 'load_file', type=str, default='', help='file to load model from') arg(parser, 'save_file', type=str, default='model.dat', help='model save file') arg(parser, 'save_every', type=int,