Exemple #1
0
def add_zero_markers(o_ts,r_ts,flux_floor):
    new_ts = r_ts
    r_times = r_ts.times
    r_values = r_ts.values
    num_steps = o_ts.times.size
    if(o_ts.values[0] <= 0):
        zero_ind = np.where(o_ts.values > 0)[0][0]-1
        if not np.any(r_times == o_ts.times[zero_ind]):
            r_times,r_values = insert_point(r_times,r_values,o_ts.times[zero_ind],o_ts.values[zero_ind])
            #new_ts = TimeSeries(r_times,r_values,None,None)
    if o_ts.times[0] != r_times[0]:
        r_times,r_values = insert_point(r_times,r_values,o_ts.times[0],o_ts.values[0])
        #new_ts = TimeSeries(r_times,r_values,None,None)
    zero_ind = 0
    if(o_ts.values[-1] <= 0):
        zero_ind = np.where(o_ts.values > 0)[0][-1]+1
        if zero_ind < num_steps and not np.any(r_times == o_ts.times[zero_ind]):
            r_times,r_values = insert_point(r_times,r_values,o_ts.times[zero_ind],o_ts.values[zero_ind])
            #new_ts = TimeSeries(r_times,r_values,None,None)
    if o_ts.times[-1] != r_times[-1]:
        r_times,r_values = insert_point(r_times,r_values,o_ts.times[-1],o_ts.values[-1])
        #new_ts = TimeSeries(r_times,r_values,None,None)
    new_ts = TimeSeries(r_times,r_values,None,None)

    return ReductionResult(
                    flux=o_ts,
                    mass=o_ts.integrate(),
                    reduced_flux=new_ts,
                    reduced_mass=new_ts.integrate())
def build_segments(rr, peaks, pneg, inflection_area):
    inf_pts = get_inflection_points(rr.flux, peaks, pneg, inflection_area)
    #segments,t_mass = build_segments(inf_pts,rr,peaks,pneg)

    x = rr.flux.times
    y = rr.flux.values
    r_x = rr.reduced_flux.times
    r_y = rr.reduced_flux.values
    segments = []
    segs_total_mass = 0

    for years in inf_pts:
        s_year = x[years[0]]
        e_year = x[years[1]]
        if (e_year - s_year) > 4:
            if not np.any(r_x == x[years[0]]):
                r_x, r_y = insert_point(r_x, r_y, x[years[0]], y[years[0]])
            if not np.any(r_x == x[years[0] + 1]):
                r_x, r_y = insert_point(r_x, r_y, x[years[0] + 1],
                                        y[years[0] + 1])
            if not np.any(r_x == x[years[1]]):
                r_x, r_y = insert_point(r_x, r_y, x[years[1]], y[years[1]])
            if not np.any(r_x == x[years[1] - 1]):
                r_x, r_y = insert_point(r_x, r_y, x[years[1] - 1],
                                        y[years[1] - 1])
            r_seg = np.where((r_x >= s_year) & (r_x <= e_year))
            seg_x = r_x[r_seg]
            seg_y = r_y[r_seg]

            timeseries = TimeSeries(seg_x, seg_y, None, None)
            segs_total_mass += timeseries.integrate().values[-1]
            #timeseries = TimeSeries(r_x[r_seg],r_y[r_seg],None,None)
            #timeseries = TimeSeries(r_x[r_start:r_end],r_y[r_start:r_end],None,None)
            segments.append(timeseries)
    return segments, segs_total_mass
def adjust_flux(data, error):
    total_mass = float(0.0)
    #sum cumulative mass of all segments
    for seg in data:
        if len(seg) > 0:
            ts = TimeSeries(seg.times, seg.values, None, None)
            temp_series = ts.integrate()
            total_mass += temp_series.values[-1]
    adjusted = {}

    #total_error_perc = float(0.0)
    #mass_used = float(0.0)

    #figure precentage to adjust each point by
    #    flux_diff = (total_mass+error)/total_mass
    for seg in data:
        #if segment has atleast 3 points (mid points are adjusted)
        if seg.times.size > 2:
            x = seg.times  #[1:-1]
            y = seg.values  #[1:-1]
            #ts = TimeSeries(x,y,None,None)
            mass = seg.integrate().values[-1]
            #get Percent mass current segment is of the total mass
            p_mass = mass / total_mass
            p_error = error / total_mass
            flux_diff = p_mass * p_error
            #get find equivalent percentage of total_error
            #e_mass = error * p_mass
            #divide reduced total error by total mass of segment
            #flux_diff = e_mass / mass
            # if dif is greater than 10% reduce it to 10%
            if abs(flux_diff) > .1:
                flux_diff = abs(flux_diff) / flux_diff * 0.1
            #    if flux_diff >0:
            #        flux_diff = .1
            #    else:
            #        flux_diff = -.1

            #if abs(flux_diff) < 0.001:
            #    flux_diff = abs(flux_diff)/flux_diff *0.001

            adjusted[x[0]] = y[0]
            max_flux = max(y)

            #for each value (except first and last values) adjust value by percent (flux_diff)
            for i in range(1, x.size - 1):

                new_val = y[i] + (y[i] * flux_diff)
                if new_val > max_flux:
                    new_val = y[i] + ((max_flux - y[i]) * .1)
                #should not happen but just in case negative numbers not allowed
                if new_val < 0:
                    new_val = float(0.0)
                adjusted[x[i]] = new_val

    return adjusted
def find_inflection(x, y, s_ind, e_ind):
    #Calculate mass
    ts1 = TimeSeries(x[s_ind:e_ind], y[s_ind:e_ind], None, None)
    mass = ts1.integrate().values[-1]
    half_mass = mass / 2
    #build loop criteria process from peak to valley
    #if value at s_ind is < than value at e_ind then e_ind is the peak.
    # therefore process in reverse
    loop = range(e_ind, s_ind, -1)
    reverse = True
    #start_ind = s_ind
    #last_ind = e_ind
    #if value at s_ind is > than value at e_ind then s_ind is the peak.
    #therefor process in sequence
    if y[s_ind] > y[e_ind]:
        loop = range(s_ind, e_ind)
        reverse = False
    #starting at peak find the total mass between valley and i. stop when <= half_mass
    for i in loop:
        #s_ind is the peak
        start = s_ind
        end = i
        #s_ind is the valley
        if reverse == False:
            start = i
            end = e_ind
        #calculate mass
        ts2 = TimeSeries(x[start:end], y[start:end], None, None)
        mass = ts2.integrate().values[-1]
        #check if mass <= half mass
        if mass <= half_mass:
            return i
    #should never get to here.
    if reverse:
        return e_ind
    else:
        return s_ind
Exemple #5
0
def adjust_flux(data, error):
    total_mass = float(0.0)
    #sum cumulative mass of all segments
    for seg in data:
        if len(seg) > 0:
            ts = TimeSeries(seg.times, seg.values, None, None)
            temp_series = ts.integrate()
            total_mass += temp_series.values[-1]
    adjusted = {}

    #figure the amount of flux to adjust each timestep by

    #    flux_diff = ((error) * mass/total_mass)/(number of timesteps to distributed over)

    for seg in data:
        #if segment has atleast 3 points (mid points are adjusted)
        if seg.times.size > 2:
            years = seg.times  #[1:-1]
            fluxes = seg.values  #[1:-1]

            mass = seg.integrate().values[-1]
            #get percent mass current segment is of the total mass
            p_mass = mass / total_mass
            #get find equivalent percentage of total_error
            p_error = error / total_mass

            #multiply p_error * p_mass to distribute correction
            #based on mass percentage of segmenmt
            flux_diff = p_mass * p_error

            if abs(flux_diff) > 0.1:
                flux_diff = abs(flux_diff) / flux_diff * 0.1

            adjusted[years[0]] = fluxes[0]
            max_flux = max(fluxes)

            #for each value (except first and last values(they never change)) adjust value by flux_diff
            for i in range(1, years.size - 1):
                new_val = fluxes[i] + (fluxes[i] * flux_diff)
                if new_val > max_flux:
                    new_val = fluxes[i] + ((max_flux - fluxes[i]) * .1)

                #should not happen but just in case negative numbers not allowed

                if new_val < 0:
                    new_val = float(0.0)
                adjusted[years[i]] = new_val

    return adjusted
Exemple #6
0
def reduce_dataset(years, values,flux_floor=0,max_tm_error=0,min_reduction_steps=200):
    """ takes  times and values and then reduces it

    returns reduced_times and reduced_values

    if all elements are zero, it returns False

    flux_floor > flux == 0
    max_tm_error > total mass error
    """
    non_zero_ind, min_retained_zero_years = remove_begin_end_zero_flux(years,values,flux_floor,min_reduction_steps)

    years_mod = years[non_zero_ind]
    values_mod = values[non_zero_ind]

    if years_mod.size <3:
        years_mod = years
        values_mod = values
        values_mod = 0
    else:
        #makes ure you have not removed more than 1% of the mass when removing 0 or flux floor rates
        o_mass = TimeSeries(years,values,None,None).integrate().values[-1]
        r_mass = TimeSeries(years_mod, values_mod, None, None).integrate().values[-1]
        if abs((o_mass-r_mass)/o_mass)*100 > 1:
            years_mod = years
            values_mod = values
            timeseries = TimeSeries(years_mod, values_mod, None, None)
            mass = timeseries.integrate()

    #normalize Values
    maxval = np.max(values_mod)
    values_mod = values_mod/maxval
    o_timeseries = TimeSeries(years,values/maxval,None,None)
    o_mass = o_timeseries.integrate()
    timeseries = TimeSeries(years_mod, values_mod, None, None)
    mass = timeseries.integrate()

    mx = np.argmax(timeseries.values)
    points = [0, mx, len(timeseries)]
    x = timeseries.times

    ythresh = 100*np.mean(timeseries.values)
    out_error = 1
    out_error_last = out_error
    OUT_ERROR_THRESHOLD = 1e-2

    UPPER_N = 200
    LOWER_N = 50
    last_result = None
    MAX_ITERATIONS = 80

    solve_type = SMOOTH
    simple_peaks = False
    last_result,ix = reduct_iter(timeseries,flux_floor,ythresh,out_error,out_error_last,OUT_ERROR_THRESHOLD,UPPER_N,LOWER_N,last_result,MAX_ITERATIONS)
    last_result = retain_min_years(last_result.reduced_flux,o_timeseries,o_mass,min_retained_zero_years)
    #if there are less points than the min_reduction_steps then use the remaining
    #points to rebalance the segments with the largest mass errors.
    play_points = min_reduction_steps - last_result.num_reduced_points
    bef = last_result.reduced_flux.times.size
    if play_points > 0:
        last_result = red_flux.rebalance_extra_points(last_result,play_points)

    rr = last_result

    #find peaks for data rebalance and reporting
    peaks, _ = sig.find_peaks(rr.reduced_flux.values,width=3,rel_height=1)
    if peaks.size == 0 :
        peaks, _ = sig.find_peaks(rr.reduced_flux.values,width=2,rel_height=1)
        if peaks.size == 0:
            peaks, _ = sig.find_peaks(rr.reduced_flux.values,width=1,rel_height=1)
    pneg, _ = sig.find_peaks(-rr.reduced_flux.values,width=3,rel_height=1)
    if pneg.size == 0:
        pneg, _ = sig.find_peaks(-rr.reduced_flux.values,width=2,rel_height=1)
        if pneg.size == 0:
            pneg, _ = sig.find_peaks(-rr.reduced_flux.values,width=1,rel_height=1)

    peaks = rr.reduced_flux.times[peaks]
    pneg = rr.reduced_flux.times[pneg]

    peaks = np.isin(o_timeseries.times,peaks)
    pneg = np.isin(o_timeseries.times,pneg)
    peaks = np.where(peaks)
    pneg = np.where(pneg)

    peaks = peaks[0]
    pneg = pneg[0]
    iter = 0
    while iter < 100 and (abs(last_result.total_mass_error*maxval) > max_tm_error or abs(last_result.total_mass_error/last_result.mass.values[-1])*100 > .001) :
        rr = red_flux.rebalance_valleys(rr,peaks,pneg)
        #keep the lowest total_mass_error
        if abs(rr.total_mass_error) < abs(last_result.total_mass_error):
            last_result = rr
        else:
            break
        iter += 1

    out_times = last_result.reduced_flux.times
    out_values = last_result.reduced_flux.values
    #return the reduced data, undo normalize of the values (*maxval)
    return out_times, out_values*maxval,-(last_result.total_mass_error * maxval),peaks.size,iter