Exemple #1
0
def main():
    parser = argparse.ArgumentParser()

    parser.add_argument("-i",
                        "--input",
                        type=str,
                        required=True,
                        help="input structure file")

    args = parser.parse_args()

    # if no argument passed to matflow
    if len(sys.argv) == 1:
        # display help message when no args provided
        parser.print_help()
        sys.exit(1)

    a = read_structure(filepath=args.input)
    for i in range(1, 10):
        supercell = a.build_supercell([i, i, i])
        new_structure = crystal()
        new_structure.get_cell_atoms(cell=supercell["cell"],
                                     atoms=supercell["atoms"])
        # calculate the madelung constant
        # get center atom
        all_x = [atoms.x for atom in new_structure.atoms]
        all_y = [atoms.y for atom in new_structure.atoms]
        all_z = [atoms.z for atom in new_structure.atoms]
Exemple #2
0
    def read_chg(self, chg_filepath):
        with open(chg_filepath, "r") as fin:
            self.lines = fin.readlines()

        for j in range(len(self.lines)):
            if len(self.lines[j].split()) == 0:
                first_blank_line = j
                break

        first_augmentation_line = None
        for j in range(len(self.lines)):
            if "augmentation" in self.lines[j]:
                first_augmentation_line = j
                break

        os.system("mkdir -p /tmp/pymatflow/")
        with open("/tmp/pymatflow/POSCAR", "w") as fout:
            for j in range(first_blank_line):
                fout.write(self.lines[j])

        self.structure = read_structure("/tmp/pymatflow/POSCAR")

        # assume three *CHG* have the same ngxf and ngyf ngzf
        self.ngxf = int(self.lines[first_blank_line + 1].split()[0])
        self.ngyf = int(self.lines[first_blank_line + 1].split()[1])
        self.ngzf = int(self.lines[first_blank_line + 1].split()[2])

        if first_augmentation_line == None:
            tmp_str = "".join(self.lines[first_blank_line + 2:])
            self.data = np.fromstring(tmp_str, sep="\n").reshape(
                self.ngzf, self.ngyf, self.ngxf)

        # the unit of value is actually not physical now!
        self.cell_volume = np.dot(
            np.cross(np.array(self.structure.cell[0]),
                     np.array(self.structure.cell[1])),
            np.array(self.structure.cell[2]))
        self.cell_volume_per_unit = self.cell_volume / (self.ngzf * self.ngyf *
                                                        self.ngxf)
Exemple #3
0
    def get_optimized_structure_cell_opt(self, xyztraj, cell_opt_out,
                                         directory):
        """
        :param xyztraj: output xxx.xyz trajectory file
        :param cell_opt_out: output file of cell opt
        :param directory: directory to put the optimized structure
        
        Note: deal with CELL_OPT
        """

        with open(cell_opt_out, 'r') as fin:
            cell_opt_out_lines = fin.readlines()
        for i in range(len(cell_opt_out_lines)):
            #if len(cell_opt_out_lines[i].split()) == 0:
            #    continue
            if "GEOMETRY OPTIMIZATION COMPLETED" in cell_opt_out_lines[i]:
                a = []
                b = []
                c = []
                for j in range(3):
                    a.append(float(cell_opt_out_lines[i + 6].split()[4 + j]))
                    b.append(float(cell_opt_out_lines[i + 7].split()[4 + j]))
                    c.append(float(cell_opt_out_lines[i + 8].split()[4 + j]))

        cell = []
        cell.append(a)
        cell.append(b)
        cell.append(c)

        traj_lines = []
        with open(xyztraj, 'r') as fin:
            for line in fin:
                if len(line.split()) == 0:
                    continue
                traj_lines.append(line)
        natom = int(traj_lines[0].split()[0])
        nimage = int(len(traj_lines) / (natom + 2))
        with open(os.path.join(directory, "cell-opt-optimized.xyz"),
                  'w') as fout:
            fout.write("%d\n" % natom)
            fout.write(
                "cell: %.9f %.9f %.9f | %.9f %.9f %.9f | %.9f %.9f %.9f\n" % (
                    cell[0][0],
                    cell[0][1],
                    cell[0][2],
                    cell[1][0],
                    cell[1][1],
                    cell[1][2],
                    cell[2][0],
                    cell[2][1],
                    cell[2][2],
                ))
            for i in range((natom + 2) * (nimage - 1) + 2,
                           (natom + 2) * nimage):
                fout.write(traj_lines[i])

        a = read_structure(
            filepath=os.path.join(directory, "cell-opt-optimized.xyz"))
        write_structure(structure=a,
                        filepath=os.path.join(directory,
                                              "cell-opt-optimized.cif"))
Exemple #4
0
    def get_optimized_structure_geo_opt(self, xyztraj, geo_opt_inp, directory):
        """
        :param xyztraj: output xxx.xyz trajectory file
        :param geo_opt_inp: input file for geo opt
        :param directory: directory to put the optimized structure

        Note: deal with GEO_OPT
        """

        with open(geo_opt_inp, 'r') as fin:
            geo_opt_inp_lines = fin.readlines()
        for i in range(len(geo_opt_inp_lines)):
            if len(geo_opt_inp_lines[i].split(
            )) > 0 and geo_opt_inp_lines[i].split()[0].upper() == "&CELL":
                j = 1
                while not ("&END" in geo_opt_inp_lines[i + j].upper().split()
                           and "CELL"
                           in geo_opt_inp_lines[i + j].upper().split()):
                    if len(geo_opt_inp_lines[i + j].split(
                    )) > 0 and geo_opt_inp_lines[i +
                                                 j].split()[0].upper() == "A":
                        a = []
                        for k in range(3):
                            a.append(
                                float(geo_opt_inp_lines[i + j].split()[k + 1]))
                    elif len(geo_opt_inp_lines[i + j].split(
                    )) > 0 and geo_opt_inp_lines[i +
                                                 j].split()[0].upper() == "B":
                        b = []
                        for k in range(3):
                            b.append(
                                float(geo_opt_inp_lines[i + j].split()[k + 1]))
                    elif len(geo_opt_inp_lines[i + j].split(
                    )) > 0 and geo_opt_inp_lines[i +
                                                 j].split()[0].upper() == "C":
                        c = []
                        for k in range(3):
                            c.append(
                                float(geo_opt_inp_lines[i + j].split()[k + 1]))
                    j += 1
                break
        cell = []
        cell.append(a)
        cell.append(b)
        cell.append(c)

        traj_lines = []
        with open(xyztraj, 'r') as fin:
            for line in fin:
                if len(line.split()) == 0:
                    continue
                traj_lines.append(line)
        natom = int(traj_lines[0].split()[0])
        nimage = int(len(traj_lines) / (natom + 2))
        with open(os.path.join(directory, "geo-opt-optimized.xyz"),
                  'w') as fout:
            fout.write("%d\n" % natom)
            fout.write(
                "cell: %.9f %.9f %.9f | %.9f %.9f %.9f | %.9f %.9f %.9f\n" % (
                    cell[0][0],
                    cell[0][1],
                    cell[0][2],
                    cell[1][0],
                    cell[1][1],
                    cell[1][2],
                    cell[2][0],
                    cell[2][1],
                    cell[2][2],
                ))
            for i in range((natom + 2) * (nimage - 1) + 2,
                           (natom + 2) * nimage):
                fout.write(traj_lines[i])

        a = read_structure(
            filepath=os.path.join(directory, "geo-opt-optimized.xyz"))
        write_structure(structure=a,
                        filepath=os.path.join(directory,
                                              "geo-opt-optimized.cif"))
    print("%f %f %f %f %f %f\n" %
          (c_elastic_n_m2[4, 0], c_elastic_n_m2[4, 1], c_elastic_n_m2[4, 2],
           c_elastic_n_m2[4, 3], c_elastic_n_m2[4, 4], c_elastic_n_m2[4, 5]))
    print("%f %f %f %f %f %f\n" %
          (c_elastic_n_m2[5, 0], c_elastic_n_m2[5, 1], c_elastic_n_m2[5, 2],
           c_elastic_n_m2[5, 3], c_elastic_n_m2[5, 4], c_elastic_n_m2[5, 5]))

    print(
        "Piezoelectric stress tensor of 2D materials (z as surface direction)\n"
    )
    print("Piezoelectric stess tensor in 2D (pC/m)\n")
    print("e_ij(2D)\n")
    print("e11 e12 e16\n")
    print("e21 e22 e26\n")
    print("e31 e32 e36\n")
    structure = read_structure(filepath=args.poscar)
    c = np.linalg.norm(np.array(structure.cell[2]))
    e_total_2d_pc_m = []
    for i in [1, 2, 3]:
        row = []
        for j in [1, 2, 6]:
            row.append(e_total[i - 1, j - 1])
        e_total_2d_pc_m.append(row)
    e_total_2d_pc_m = np.array(e_total_2d_pc_m) * 1.0e+12 * c * 1.0e-10  # pC/m
    print(
        "%f %f %f\n" %
        (e_total_2d_pc_m[0, 0], e_total_2d_pc_m[0, 1], e_total_2d_pc_m[0, 2]))
    print(
        "%f %f %f\n" %
        (e_total_2d_pc_m[1, 0], e_total_2d_pc_m[1, 1], e_total_2d_pc_m[1, 2]))
    print(
Exemple #6
0
def main():
    parser = argparse.ArgumentParser()
    
    parser.add_argument("-i", "--input", type=str, required=True,
            help="input structure file")

    parser.add_argument("-o", "--output", type=str, default="./contour",
        help="prefix of the output image file name")
    
    parser.add_argument("--atoms", nargs='+', type=int,
        help="list of fixed atoms, index start from 1, default is all atoms")

    parser.add_argument("--around-z", type=float, nargs=3,
        help="select atoms around specified z in Angstrom with tolerance, like this --around-z 10 -0.5 0.5")

    parser.add_argument("--dgrid3d", type=int, nargs=3,
        default=[100, 100, 4],
        help="used by gnuplot to set dgrid3d int, int, int")

    parser.add_argument("--levels", type=int, default=10,
        help="levels of the color map or color bar")

    parser.add_argument("--ngridx", type=int, default=200,
        help="ngridx to plot the contour for irregularly spaced data")

    parser.add_argument("--ngridy", type=int, default=200,
        help="ngridy to plot the contour for irregularly spaced data")        

    # ==========================================================
    # transfer parameters from the arg subparser to static_run setting
    # ==========================================================

    args = parser.parse_args()


    structure = read_structure(args.input)

    if args.atoms == None and args.around_z == None:
        atoms_index_from_1 = range(1, len(structure.atoms)+1)
    elif args.atoms == None and args.around_z != None:
        atoms_index_from_1 = []
        for i in range(len(structure.atoms)):
            if structure.atoms[i].z > (args.around_z[0] + args.around_z[1]) and structure.atoms[i].z < (args.around_z[0] + args.around_z[2]):
                atoms_index_from_1.append(i+1)
    elif args.atoms != None and args.around_z == None:
        atoms_index_from_1 = args.atoms
    elif args.atoms != None and args.around_z != None:
        print("======================================================\n")
        print("                      Warning\n")
        print("--atoms and --around-z can not be used at the same time.")
        sys.exit(1)
    
    data = []
    for i in atoms_index_from_1:
        #X.append(structure.atoms[i-1].x)
        #Y.append(structure.atoms[i-1].y)
        #Z.append(structure.atoms[i-1].z)
        data.append([structure.atoms[i-1].x, structure.atoms[i-1].y, structure.atoms[i-1].z])

    with open(args.output+".data", "w") as fout:
        fout.write("# format: x y z\n")
        for d in data:
            fout.write("%f\t%f\t%f\n" % (d[0], d[1], d[2]))
    

    with open("plot.gnuplot", "w") as fout:
        fout.write("set term gif\n")
        fout.write("set dgrid3d %d, %d, %d\n" % (args.dgrid3d[0], args.dgrid3d[1], args.dgrid3d[2]))
        fout.write("set contour base\n")
        fout.write("unset key\n")
        fout.write("set autoscale\n")
        fout.write("set xlabel \"X\"\n")
        fout.write("set ylabel \"Y\"\n")
        fout.write("set zlabel \"Z\"\n")
        #fout.write("set output \"%s\"\n" % (args.output+".gif"))
        #fout.write("set multiplot layout 1, 2\n")

        #fout.write("set origin 0, 0\n")
        fout.write("\n\n")
        fout.write("set surface\n")
        fout.write("set pm3d hidden3d\n")
        fout.write("set output \"%s\"\n" % (args.output+".surf"+".gif"))
        fout.write("splot '%s' u 1:2:3 w pm3d\n" % (args.output+".data"))

        #fout.write("set origin 0.5, 0\n")
        fout.write("\n\n")
        fout.write("set pm3d map\n")
        fout.write("set surface\n")
        fout.write("set output \"%s\"\n" % (args.output+".map"+".gif"))
        fout.write("splot '%s' u 1:2:3 w pm3d\n" % (args.output+".data"))
    os.system("gnuplot plot.gnuplot")

    # ----------------
    # 2D contour plot
    #-----------------
    # Contour plot of irregularly spaced data
    # data is irregularly spaced data
    # we can refer to https://matplotlib.org/3.2.1/gallery/images_contours_and_fields/irregulardatagrid.html
    # to see how to build contour plot of such kind of data
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib.tri as tri
    
    data_np = np.array(data)

    # fill color, three color are divided into three layer(6)
    # cmap = plt.cm.hot means using thermostat plot(graduated red yellow)
    #cset = plt.contourf(X, Y, Z, levels=10, cmap=plt.cm.hot)
    #contour = plt.contour(X, Y, Z, colors='k')
    #plt.colorbar(cset)
    #plt.autoscale()
    #plt.tight_layout()
    #plt.show()
    #plt.xlabel('x')
    #plt.ylabel('y')
    #plt.savefig(args.output+".2d-contour.png")
    #plt.close()    
    
    ngridx = args.ngridx
    ngridy = args.ngridy
    x = data_np[:, 0]
    y = data_np[:, 1]
    z = data_np[:, 2]

    #fig, (ax1, ax2) = plt.subplots(nrows=2)
    fig = plt.figure()
    # -----------------------
    # Interpolation on a grid
    # -----------------------
    # A contour plot of irregularly spaced data coordinates
    # via interpolation on a grid.

    # Create grid values first.
    xi = np.linspace(np.min(x), np.max(x), ngridx)
    yi = np.linspace(np.min(y), np.max(y), ngridy)

    # Linearly interpolate the data (x, y) on a grid defined by (xi, yi).
    triang = tri.Triangulation(x, y)
    interpolator = tri.LinearTriInterpolator(triang, z)
    Xi, Yi = np.meshgrid(xi, yi)
    zi = interpolator(Xi, Yi)

    # Note that scipy.interpolate provides means to interpolate data on a grid
    # as well. The following would be an alternative to the four lines above:
    #from scipy.interpolate import griddata
    #zi = griddata((x, y), z, (xi[None,:], yi[:,None]), method='linear')

    #ax1.contour(xi, yi, zi, levels=args.levels, linewidths=0.5, colors='k')

    #cntr1 = ax1.contourf(xi, yi, zi, levels=args.levels, cmap="RdBu_r")

    #fig.colorbar(cntr1, ax=ax1)
    #ax1.plot(x, y, 'ko', ms=3)
    #ax1.set(xlim=(-2, 2), ylim=(-2, 2))
    #ax1.set_title('grid and contour (%d points, %d grid points)' %
                #(npts, ngridx * ngridy))

    #ax1.axis('equal') # set x y axis equal spaced

    # ----------
    # Tricontour
    # ----------
    # Directly supply the unordered, irregularly spaced coordinates
    # to tricontour.

    #ax2.tricontour(x, y, z, levels=args.levels, linewidths=0.5, colors='k')
    plt.tricontour(x, y, z, levels=args.levels, linewidths=0.5, colors='k')
    #cntr2 = ax2.tricontourf(x, y, z, levels=args.levels, cmap="RdBu_r")
    cntr2 = plt.tricontourf(x, y, z, levels=args.levels, cmap="RdBu_r")

    #fig.colorbar(cntr2, ax=ax2)
    fig.colorbar(cntr2)
    #ax2.plot(x, y, 'ko', ms=3)
    #plt.plot(x, y, "ko", ms=3)
    #ax2.set(xlim=(-2, 2), ylim=(-2, 2))
    #ax2.set_title('tricontour (%d points)' % npts)
    
    #ax2.axis('equal') # set x y axis equal spaced
    plt.axis("equal")

    #plt.subplots_adjust(hspace=0.5)
    plt.autoscale()
    plt.show() 
    fig.savefig(args.output+".2d-contour.png")

    # =======================
    # =======================
    plt.close()
    ax = plt.axes(projection='3d')    
    cset = ax.plot_trisurf(x, y, z, cmap='rainbow')
    plt.colorbar(cset)
    plt.autoscale()
    plt.tight_layout()
    ax.set_xlabel('x')
    ax.set_ylabel('y')
    ax.set_zlabel('z')    
    plt.savefig(args.output+".3d-trisurf.png")
def main():
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "-i",
        "--input",
        type=str,
        nargs=2,
        required=True,
        help=
        "input initial and final structure file, eg. -i initial.cif final.cif")

    parser.add_argument("-o",
                        "--output",
                        type=str,
                        default="./contour-diff",
                        help="prefix of the output image file name")

    parser.add_argument(
        "--atoms",
        nargs='+',
        type=int,
        help="list of fixed atoms, index start from 1, default is all atoms")

    parser.add_argument(
        "--around-z",
        type=float,
        nargs=3,
        help=
        "select atoms around specified z in Angstrom with tolerance, like this --around-z 10 -0.5 0.5"
    )

    parser.add_argument("--levels",
                        type=int,
                        default=10,
                        help="levels of the color map or color bar")

    parser.add_argument(
        "--ngridx",
        type=int,
        default=200,
        help="ngridx to plot the contour for irregularly spaced data")

    parser.add_argument(
        "--ngridy",
        type=int,
        default=200,
        help="ngridy to plot the contour for irregularly spaced data")

    parser.add_argument(
        "--diff",
        type=str,
        default="z",
        choices=["x", "y", "z", "xyz"],
        help=
        "choose to plot the diff of x or y or z, or xyz which means displacement"
    )
    # ==========================================================
    # transfer parameters from the arg subparser to static_run setting
    # ==========================================================

    args = parser.parse_args()

    initial_structure = read_structure(args.input[0])
    final_structure = read_structure(args.input[1])

    if args.atoms == None and args.around_z == None:
        atoms_index_from_1 = range(1, len(initial_structure.atoms) + 1)
    elif args.atoms == None and args.around_z != None:
        atoms_index_from_1 = []
        for i in range(len(initial_structure.atoms)):
            if initial_structure.atoms[i].z > (
                    args.around_z[0] +
                    args.around_z[1]) and initial_structure.atoms[i].z < (
                        args.around_z[0] + args.around_z[2]):
                atoms_index_from_1.append(i + 1)
    elif args.atoms != None and args.around_z == None:
        atoms_index_from_1 = args.atoms
    elif args.atoms != None and args.around_z != None:
        print("======================================================\n")
        print("                      Warning\n")
        print("--atoms and --around-z can not be used at the same time.")
        sys.exit(1)

    initial_data = []
    for i in atoms_index_from_1:
        #X.append(structure.atoms[i-1].x)
        #Y.append(structure.atoms[i-1].y)
        #Z.append(structure.atoms[i-1].z)
        initial_data.append([
            initial_structure.atoms[i - 1].x, initial_structure.atoms[i - 1].y,
            initial_structure.atoms[i - 1].z
        ])

    final_data = []
    for i in atoms_index_from_1:
        #X.append(structure.atoms[i-1].x)
        #Y.append(structure.atoms[i-1].y)
        #Z.append(structure.atoms[i-1].z)
        final_data.append([
            final_structure.atoms[i - 1].x, final_structure.atoms[i - 1].y,
            final_structure.atoms[i - 1].z
        ])

    # data: [x, y, z, diff(x|y|z|xyz)]
    data = copy.deepcopy(final_data)
    for i in range(len(final_data)):
        if args.diff == "x":
            diff = final_data[i][0] - initial_data[i][0]
        elif args.diff == "y":
            diff = final_data[i][1] - initial_data[i][1]
        elif args.diff == "z":
            diff = final_data[i][2] - initial_data[i][2]
        elif args.diff == "xyz":
            diff = np.sqrt((final_data[i][0] - initial_data[i][0])**2 +
                           (final_data[i][1] - initial_data[i][1])**2 +
                           (final_data[i][2] - initial_data[i][2])**2)
        else:
            pass
        data[i].append(diff)

    with open(args.output + ".data", "w") as fout:
        fout.write("# format: x y z diff(%s)\n" % (args.diff))
        for d in data:
            fout.write("%f\t%f\t%f\t%f\n" % (d[0], d[1], d[2], d[3]))

    # ----------------
    # 2D contour plot
    #-----------------
    # Contour plot of irregularly spaced data
    # data is irregularly spaced data
    # we can refer to https://matplotlib.org/3.2.1/gallery/images_contours_and_fields/irregulardatagrid.html
    # to see how to build contour plot of such kind of data

    data_np = np.array(data)

    # fill color, three color are divided into three layer(6)
    # cmap = plt.cm.hot means using thermostat plot(graduated red yellow)
    #cset = plt.contourf(X, Y, Z, levels=10, cmap=plt.cm.hot)
    #contour = plt.contour(X, Y, Z, colors='k')
    #plt.colorbar(cset)
    #plt.autoscale()
    #plt.tight_layout()
    #plt.show()
    #plt.xlabel('x')
    #plt.ylabel('y')
    #plt.savefig(args.output+".2d-contour.png")
    #plt.close()

    ngridx = args.ngridx
    ngridy = args.ngridy
    x = data_np[:, 0]  # x
    y = data_np[:, 1]  # y
    z = data_np[:, 3]  # diff(x|y|z)

    #fig, (ax1, ax2) = plt.subplots(nrows=2)
    fig = plt.figure()
    # -----------------------
    # Interpolation on a grid
    # -----------------------
    # A contour plot of irregularly spaced data coordinates
    # via interpolation on a grid.

    # Create grid values first.
    xi = np.linspace(np.min(x), np.max(x), ngridx)
    yi = np.linspace(np.min(y), np.max(y), ngridy)

    # Linearly interpolate the data (x, y) on a grid defined by (xi, yi).
    triang = tri.Triangulation(x, y)
    interpolator = tri.LinearTriInterpolator(triang, z)
    Xi, Yi = np.meshgrid(xi, yi)
    zi = interpolator(Xi, Yi)

    # Note that scipy.interpolate provides means to interpolate data on a grid
    # as well. The following would be an alternative to the four lines above:
    #from scipy.interpolate import griddata
    #zi = griddata((x, y), z, (xi[None,:], yi[:,None]), method='linear')

    #ax1.contour(xi, yi, zi, levels=args.levels, linewidths=0.5, colors='k')

    #cntr1 = ax1.contourf(xi, yi, zi, levels=args.levels, cmap="RdBu_r")

    #fig.colorbar(cntr1, ax=ax1)
    #ax1.plot(x, y, 'ko', ms=3)
    #ax1.set(xlim=(-2, 2), ylim=(-2, 2))
    #ax1.set_title('grid and contour (%d points, %d grid points)' %
    #(npts, ngridx * ngridy))

    #ax1.axis('equal') # set x y axis equal spaced

    # ----------
    # Tricontour
    # ----------
    # Directly supply the unordered, irregularly spaced coordinates
    # to tricontour.

    #ax2.tricontour(x, y, z, levels=args.levels, linewidths=0.5, colors='k')
    plt.tricontour(x, y, z, levels=args.levels, linewidths=0.5, colors='k')
    #cntr2 = ax2.tricontourf(x, y, z, levels=args.levels, cmap="RdBu_r")
    cntr2 = plt.tricontourf(x, y, z, levels=args.levels, cmap="RdBu_r")

    #fig.colorbar(cntr2, ax=ax2)
    fig.colorbar(cntr2)
    #ax2.plot(x, y, 'ko', ms=3)
    #plt.plot(x, y, "ko", ms=3)
    #ax2.set(xlim=(-2, 2), ylim=(-2, 2))
    #ax2.set_title('tricontour (%d points)' % npts)

    #ax2.axis('equal') # set x y axis equal spaced
    plt.axis("equal")

    #plt.subplots_adjust(hspace=0.5)
    plt.autoscale()
    plt.show()
    fig.savefig(args.output + ".2d-contour.png")
Exemple #8
0
    ]


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument("-i",
                        "--input",
                        type=str,
                        help="the input structure file")

    parser.add_argument("--symprec",
                        type=float,
                        default=1.0e-7,
                        help="symmetry precision")

    args = parser.parse_args()

    a = read_structure(filepath=args.input)

    print("===========================================\n")
    print("calculated using spglib\n")
    print("===========================================\n")
    print("spacegroup is : %s\n" %
          get_spacegroup_and_kpath(structure=a, symprec=args.symprec)[0])
    print("Warning:\n")
    print("the result is not guaranteed to be correct\n")
    print("-------------------------------------------\n")
    print("suggested k path calculated using seekpath:\n")
    print(get_spacegroup_and_kpath(structure=a, symprec=args.symprec)[1])
Exemple #9
0
def main():
    parser = argparse.ArgumentParser()

    parser.add_argument("-i",
                        "--input",
                        type=str,
                        required=True,
                        help="input PARCHG file")

    parser.add_argument("--output-structure",
                        type=str,
                        default="parchg.cif",
                        help="output stucture contained in PARCHG")

    parser.add_argument("-o",
                        "--output",
                        type=str,
                        default="stm",
                        help="prefix of the output image file name")

    parser.add_argument("--levels",
                        type=int,
                        default=10,
                        help="levels of the color map or color bar")

    parser.add_argument(
        "-z",
        "--z",
        type=float,
        default=1,
        help=
        "a value between 0 and 1, indicat height of in z direction to print the plot"
    )

    parser.add_argument("--cmap",
                        type=str,
                        default="gray",
                        choices=[
                            "gray", "hot", "afmhot", "Spectral", "plasma",
                            "magma", "hsv", "rainbow", "brg"
                        ])

    # ==========================================================
    # transfer parameters from the arg subparser to static_run setting
    # ==========================================================

    args = parser.parse_args()

    parchg_filepath = args.input

    with open(parchg_filepath, "r") as fin:
        parchg = fin.readlines()

    for i in range(len(parchg)):
        if len(parchg[i].split()) == 0:
            first_blank_line = i
            break

    first_augmentation_line = None
    for i in range(len(parchg)):
        if "augmentation" in parchg[i]:
            first_augmentation_line = i
            break

    os.system("mkdir -p /tmp/pymatflow/")
    with open("/tmp/pymatflow/POSCAR", "w") as fout:
        for i in range(first_blank_line):
            fout.write(parchg[i])

    structure = read_structure("/tmp/pymatflow/POSCAR")
    write_structure(structure=structure, filepath=args.output_structure)

    ngxf = int(parchg[first_blank_line + 1].split()[0])
    ngyf = int(parchg[first_blank_line + 1].split()[1])
    ngzf = int(parchg[first_blank_line + 1].split()[2])

    if first_augmentation_line == None:
        #data = np.loadtxt(chg[first_blank_line+2:])
        tmp_str = "".join(parchg[first_blank_line + 2:])
        data = np.fromstring(tmp_str, sep="\n")
    else:
        #data = np.loadtxt(chg[first_blank_line+2:first_augmentation_line])
        tmp_str = "".join(parchg[first_blank_line + 2:first_augmentation_line])
        data = np.fromstring(tmp_str, sep="\n")

    data = data.reshape(ngzf, ngyf, ngxf)

    # -------------------------------------------------------
    # gray scale image only for z direction
    # may not work for triclinic and monoclinic crystal system
    # -------------------------------------------------------

    zi = int((data.shape[0] - 1) * args.z)
    #img = data[i, ::-1, ::]
    img = data[zi, ::, ::]
    img = (img - img.min()) / (img.max() - img.min()) * 255
    # need to do a transform when the cell is not Orthorhombic
    # skew the image
    a = np.array(structure.cell[0])
    b = np.array(structure.cell[1])
    cosangle = a.dot(b) / (np.linalg.norm(a) * np.linalg.norm(b))
    angle = np.arccos(cosangle) * 180 / np.pi
    ax = plt.axes()  #plt.figure()
    n1 = ngxf
    n2 = ngyf
    n1_right = n1
    n1_left = -(n2 * np.tan((angle - 90) / 180 * np.pi))
    #im = ax.imshow(img, cmap="gray", extent=[n1_left, n1_right, 0, n2], interpolation="none", origin="lower", clip_on=True)
    im = ax.imshow(img,
                   cmap="gray",
                   extent=[0, n1, 0, n2],
                   interpolation="none",
                   origin="lower",
                   clip_on=True)
    #im = plt.imshow(data[i, :, :], cmap="gray")
    trans_data = mtransforms.Affine2D().skew_deg(90 - angle, 0) + ax.transData
    im.set_transform(trans_data)
    # display intended extent of the image
    x1, x2, y1, y2 = im.get_extent()
    # do not view the line, but it is needed to be plot so the intended image is dispalyed completely
    ax.plot([x1, x2, x2, x1, x1], [y1, y1, y2, y2, y1],
            "y--",
            transform=trans_data,
            visible=False)
    #ax.set_xlim(n1_left, n1_right)
    #ax.set_ylim(0, n2)
    plt.colorbar(im)
    ax.autoscale()
    plt.tight_layout()
    plt.savefig(args.output + "-z-%f.grayscale.png" % args.z)
    plt.close()

    # -----------------------------------------------------------------------------
    # 2D contour plot
    #------------------------------------------------------------------------------

    nx = np.linspace(0, 1, ngxf)
    ny = np.linspace(0, 1, ngyf)
    X, Y = np.meshgrid(
        nx, ny
    )  # now this Mesh grid cannot be used directly, we have to calc the real x y for it
    for xi in range(len(nx)):
        for yi in range(len(ny)):
            X[yi, xi] = structure.cell[0][0] * nx[xi] + structure.cell[1][
                0] * ny[yi]
            Y[yi, xi] = structure.cell[0][1] * nx[xi] + structure.cell[1][
                1] * ny[yi]

    Z = data[zi, :, :]
    Z = (Z - Z.min()) / (Z.max() - Z.min()) * 255
    # fill color, three color are divided into three layer(6)
    # cmap = plt.cm.hot means using thermostat plot(graduated red yellow)
    #cset = plt.contourf(X, Y, Z, levels=args.levels, cmap=plt.cm.hot)
    cset = plt.contourf(X, Y, Z, levels=args.levels, cmap=args.cmap)
    contour = plt.contour(X, Y, Z, levels=[20, 40], colors='k')
    plt.colorbar(cset)
    plt.autoscale()
    plt.tight_layout()
    #plt.show()
    plt.axis("equal")  # set axis equally spaced
    plt.xlabel('x')
    plt.ylabel('y')
    plt.savefig(args.output + ".2d-contour-z-%f.png" % args.z)
    plt.close()
Exemple #10
0
def main():
    parser = argparse.ArgumentParser()

    parser.add_argument("-i",
                        "--input",
                        type=str,
                        required=True,
                        help="input structure file")

    parser.add_argument("-o",
                        "--output",
                        type=str,
                        default="kpath-from-seekpath.txt",
                        help="the output kpoitns file")

    parser.add_argument(
        "--join",
        type=int,
        default=15,
        help=
        "default number of kpoint to connect the connected high symmetry k point"
    )

    # ===============================================================================
    args = parser.parse_args()

    structure = read_structure(filepath=args.input)

    lattice = structure.cell
    positions = []
    numbers = []
    a = np.sqrt(structure.cell[0][0]**2 + structure.cell[0][1]**2 +
                structure.cell[0][2]**2)
    b = np.sqrt(structure.cell[1][0]**2 + structure.cell[1][1]**2 +
                structure.cell[1][2]**2)
    c = np.sqrt(structure.cell[2][0]**2 + structure.cell[2][1]**2 +
                structure.cell[2][2]**2)

    frac_coord = structure.get_fractional()
    for i in range(len(frac_coord)):
        positions.append(
            [frac_coord[i][1], frac_coord[i][2],
             frac_coord[i][3]])  # must be fractional coordinates
        numbers.append(element[frac_coord[i][0]].number)

    cell = (lattice, positions, numbers)

    kpoints_seekpath = seekpath.get_path(cell)

    kpath = []
    # [[kx, ky, kz, label, connect_indicator], ...] like [[0.0, 0.0, 0.0, 'GAMMA', 15], ...]
    # if connect_indicator in a kpoint is an integer, then it will connect to the following point
    # through the number of kpoints defined by connect_indicator.
    # if connect_indicator in a kpoint is '|', then it will not connect to the following point,
    kpath.append([
        float(kpoints_seekpath["point_coords"][kpoints_seekpath["path"][0][0]]
              [0]),
        float(kpoints_seekpath["point_coords"][kpoints_seekpath["path"][0][0]]
              [1]),
        float(kpoints_seekpath["point_coords"][kpoints_seekpath["path"][0][0]]
              [2]),
        kpoints_seekpath["path"][0][0],
        args.join,
    ])
    kpath.append([
        float(kpoints_seekpath["point_coords"][kpoints_seekpath["path"][0][1]]
              [0]),
        float(kpoints_seekpath["point_coords"][kpoints_seekpath["path"][0][1]]
              [1]),
        float(kpoints_seekpath["point_coords"][kpoints_seekpath["path"][0][1]]
              [2]),
        kpoints_seekpath["path"][0][1],
        args.
        join,  # first set to args.join here, and it will be reset by the following path by judge whether it is connected
    ])
    for i in range(1, len(kpoints_seekpath["path"])):
        if kpoints_seekpath["path"][i][0] == kpoints_seekpath["path"][i -
                                                                      1][1]:
            kpath[-1][4] = args.join
            kpath.append([
                float(kpoints_seekpath["point_coords"][kpoints_seekpath["path"]
                                                       [i][1]][0]),
                float(kpoints_seekpath["point_coords"][kpoints_seekpath["path"]
                                                       [i][1]][1]),
                float(kpoints_seekpath["point_coords"][kpoints_seekpath["path"]
                                                       [i][1]][2]),
                kpoints_seekpath["path"][i][1],
                args.join,
            ])
        else:
            kpath[-1][4] = "|"
            kpath.append([
                float(kpoints_seekpath["point_coords"][kpoints_seekpath["path"]
                                                       [i][0]][0]),
                float(kpoints_seekpath["point_coords"][kpoints_seekpath["path"]
                                                       [i][0]][1]),
                float(kpoints_seekpath["point_coords"][kpoints_seekpath["path"]
                                                       [i][0]][2]),
                kpoints_seekpath["path"][i][0],
                args.join,
            ])
            kpath.append([
                float(kpoints_seekpath["point_coords"][kpoints_seekpath["path"]
                                                       [i][1]][0]),
                float(kpoints_seekpath["point_coords"][kpoints_seekpath["path"]
                                                       [i][1]][1]),
                float(kpoints_seekpath["point_coords"][kpoints_seekpath["path"]
                                                       [i][1]][2]),
                kpoints_seekpath["path"][i][1],
                args.join,
            ])
    #
    with open(args.output, 'w') as fout:
        fout.write("%d\n" % len(kpath))
        for kpoint in kpath:
            fout.write(
                "%f %f %f #%s %s\n" %
                (kpoint[0], kpoint[1], kpoint[2], kpoint[3], str(kpoint[4])))
    #

    print("===========================================\n")
    print("calculated using seekpath\n")
    print("===========================================\n")
    print("Warning:\n")
    print("the result is not guaranteed to be correct\n")
    print("-------------------------------------------\n")
    print("suggested k path calculated using seekpath:\n")
    print(kpoints_seekpath)
Exemple #11
0
def main():
    parser = argparse.ArgumentParser()
    
    parser.add_argument("-i", "--input", type=str, nargs="+", required=True,
            help="input structure file and vasprun.xml, you can specify two vasprun.xml(one for scf and one for nscf). eg. -i structure.cif vasprun.xml.scf vasprun.xml.nscf")

    parser.add_argument("-o", "--output", type=str, default="./contour-ldos",
        help="prefix of the output image file name")
    
    parser.add_argument("--atoms", nargs='+', type=int,
        help="list of fixed atoms, index start from 1, default is all atoms")

    parser.add_argument("--around-z", type=float, nargs=3,
        help="select atoms around specified z in Angstrom with tolerance, like this --around-z 10 -0.5 0.5")

    parser.add_argument("--levels", type=int, default=10,
        help="levels of the color map or color bar")

    parser.add_argument("--ngridx", type=int, default=200,
        help="ngridx to plot the contour for irregularly spaced data")

    parser.add_argument("--ngridy", type=int, default=200,
        help="ngridy to plot the contour for irregularly spaced data")        

    # ==========================================================
    # transfer parameters from the arg subparser to static_run setting
    # ==========================================================

    args = parser.parse_args()


    structure = read_structure(args.input[0])

    pdos = post_pdos()
    if len(args.input) == 2:
        efermi_from = "nscf"
        pdos.get_vasprun(args.input[1])
        pdos.get_efermi(vasprun=args.input[1])
    elif len(args.input) == 3:
        efermi_from = "scf"
        pdos.get_vasprun(args.input[2])
        pdos.get_efermi(vasprun=args.input[1])
    #pdos.export(directory=args.directory, engine=args.engine, plotrange=args.plotrange)



    if args.atoms == None and args.around_z == None:
        atoms_index_from_1 = range(1, len(structure.atoms)+1)
    elif args.atoms == None and args.around_z != None:
        atoms_index_from_1 = []
        for i in range(len(structure.atoms)):
            if structure.atoms[i].z > (args.around_z[0] + args.around_z[1]) and structure.atoms[i].z < (args.around_z[0] + args.around_z[2]):
                atoms_index_from_1.append(i+1)
    elif args.atoms != None and args.around_z == None:
        atoms_index_from_1 = args.atoms
    elif args.atoms != None and args.around_z != None:
        print("======================================================\n")
        print("                      Warning\n")
        print("--atoms and --around-z can not be used at the same time.")
        sys.exit(1)
    
    # data: [x, y, z, ldos]
    data = []
    for i in atoms_index_from_1:
        ldos = 0.0
        #if pdos.magnetic_status == "non-soc-ispin-1":
        #    pdos.data[i-1]
        #elif pdos.magnetic_status == "non-soc-ispin-2":
        #    pdos.data[i-1]
        #elif pdos.magnetic_status == "soc-ispin-1" or pdos.magnetic_status == "soc-ispin-2":
        #    pdos.data[i-1]
        for item in pdos.data[i-1]:
            if item == "ion":
                continue
            for itm in pdos.data[i-1][item]:
                if itm == "energy":
                    continue
                ldos += sum(pdos.data[i-1][item][itm])
        data.append([structure.atoms[i-1].x, structure.atoms[i-1].y, structure.atoms[i-1].z, ldos])


    with open(args.output+".data", "w") as fout:
        fout.write("# format: x y z ldos\n")
        for d in data:
            fout.write("%f\t%f\t%f\t%f\n" % (d[0], d[1], d[2], d[3]))
    


    # ----------------
    # 2D contour plot
    #-----------------
    # Contour plot of irregularly spaced data
    # data is irregularly spaced data
    # we can refer to https://matplotlib.org/3.2.1/gallery/images_contours_and_fields/irregulardatagrid.html
    # to see how to build contour plot of such kind of data
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib.tri as tri
    
    data_np = np.array(data)

    # fill color, three color are divided into three layer(6)
    # cmap = plt.cm.hot means using thermostat plot(graduated red yellow)
    #cset = plt.contourf(X, Y, Z, levels=10, cmap=plt.cm.hot)
    #contour = plt.contour(X, Y, Z, colors='k')
    #plt.colorbar(cset)
    #plt.autoscale()
    #plt.tight_layout()
    #plt.show()
    #plt.xlabel('x')
    #plt.ylabel('y')
    #plt.savefig(args.output+".2d-contour.png")
    #plt.close()    
    
    ngridx = args.ngridx
    ngridy = args.ngridy
    x = data_np[:, 0] # x
    y = data_np[:, 1] # y
    z = data_np[:, 3] # ldos

    #fig, (ax1, ax2) = plt.subplots(nrows=2)
    fig = plt.figure()
    # -----------------------
    # Interpolation on a grid
    # -----------------------
    # A contour plot of irregularly spaced data coordinates
    # via interpolation on a grid.

    # Create grid values first.
    xi = np.linspace(np.min(x), np.max(x), ngridx)
    yi = np.linspace(np.min(y), np.max(y), ngridy)

    # Linearly interpolate the data (x, y) on a grid defined by (xi, yi).
    triang = tri.Triangulation(x, y)
    interpolator = tri.LinearTriInterpolator(triang, z)
    Xi, Yi = np.meshgrid(xi, yi)
    zi = interpolator(Xi, Yi)

    # Note that scipy.interpolate provides means to interpolate data on a grid
    # as well. The following would be an alternative to the four lines above:
    #from scipy.interpolate import griddata
    #zi = griddata((x, y), z, (xi[None,:], yi[:,None]), method='linear')

    #ax1.contour(xi, yi, zi, levels=args.levels, linewidths=0.5, colors='k')

    #cntr1 = ax1.contourf(xi, yi, zi, levels=args.levels, cmap="RdBu_r")

    #fig.colorbar(cntr1, ax=ax1)
    #ax1.plot(x, y, 'ko', ms=3)
    #ax1.set(xlim=(-2, 2), ylim=(-2, 2))
    #ax1.set_title('grid and contour (%d points, %d grid points)' %
                #(npts, ngridx * ngridy))

    #ax1.axis('equal') # set x y axis equal spaced

    # ----------
    # Tricontour
    # ----------
    # Directly supply the unordered, irregularly spaced coordinates
    # to tricontour.

    #ax2.tricontour(x, y, z, levels=args.levels, linewidths=0.5, colors='k')
    plt.tricontour(x, y, z, levels=args.levels, linewidths=0.5, colors='k')
    #cntr2 = ax2.tricontourf(x, y, z, levels=args.levels, cmap="RdBu_r")
    cntr2 = plt.tricontourf(x, y, z, levels=args.levels, cmap="RdBu_r")

    #fig.colorbar(cntr2, ax=ax2)
    fig.colorbar(cntr2)
    #ax2.plot(x, y, 'ko', ms=3)
    #plt.plot(x, y, "ko", ms=3)
    #ax2.set(xlim=(-2, 2), ylim=(-2, 2))
    #ax2.set_title('tricontour (%d points)' % npts)
    
    #ax2.axis('equal') # set x y axis equal spaced
    plt.axis("equal")

    #plt.subplots_adjust(hspace=0.5)
    plt.autoscale()
    plt.show() 
    fig.savefig(args.output+".2d-contour.png")

    plt.close()
    ax = plt.axes(projection='3d')    
    cset = ax.plot_trisurf(x, y, z, cmap='rainbow')
    plt.colorbar(cset)
    plt.autoscale()
    plt.tight_layout()
    ax.set_xlabel('x')
    ax.set_ylabel('y')
    ax.set_zlabel('ldos')    
    plt.savefig(args.output+".3d-trisurf.png")
Exemple #12
0
def main():
    parser = argparse.ArgumentParser()

    parser.add_argument("-i",
                        "--input",
                        type=str,
                        required=True,
                        help="input structure file")

    parser.add_argument("-o",
                        "--output",
                        type=str,
                        default="output.xsd",
                        help="prefix of the output image file name")

    parser.add_argument(
        "--levels",
        type=int,
        default=3,
        help="number of levels in color map or alpha channel, etc.")

    # ==========================================================
    # transfer parameters from the arg subparser to static_run setting
    # ==========================================================

    args = parser.parse_args()
    # read xsd file
    xsd = parse(args.input)
    structure = read_structure(args.input)

    # ID of Atom3D in xsd file start from 4
    imap = xsd.getroot().find("AtomisticTreeRoot").find("SymmetrySystem").find(
        "MappingSet").find("MappingFamily").find("IdentityMapping")
    atoms = imap.findall("Atom3d")
    bonds = imap.findall("Bond")
    natom = len(atoms)
    nbond = len(bonds)
    bonds_length = []
    for bond in bonds:
        connects = []
        connects.append(int(bond.attrib["Connects"].split(",")[0]))
        connects.append(int(bond.attrib["Connects"].split(",")[1]))
        connect_0_in_atoms = False
        connect_1_in_atoms = False
        for i in range(len(atoms)):
            if int(atoms[i].attrib["ID"]) == connects[0]:
                connect_0_in_atoms = True
                connect_0_atom_i = i
                break
        for i in range(len(atoms)):
            if int(atoms[i].attrib["ID"]) == connects[1]:
                connect_1_in_atoms = True
                connect_1_atom_i = i
                break
        if connect_0_in_atoms == True and connect_1_in_atoms == True:
            x0 = float(atoms[connect_0_atom_i].attrib["XYZ"].split(",")[0])
            y0 = float(atoms[connect_0_atom_i].attrib["XYZ"].split(",")[1])
            z0 = float(atoms[connect_0_atom_i].attrib["XYZ"].split(",")[2])

            x1 = float(atoms[connect_1_atom_i].attrib["XYZ"].split(",")[0])
            y1 = float(atoms[connect_1_atom_i].attrib["XYZ"].split(",")[1])
            z1 = float(atoms[connect_1_atom_i].attrib["XYZ"].split(",")[2])

            # transform from fractional coord to cartesian
            latcell = np.array(structure.cell)
            convmat = latcell.T
            x0, y0, z0 = list(convmat.dot(np.array([x0, y0, z0])))
            x1, y1, z1 = list(convmat.dot(np.array([x1, y1, z1])))
            length = np.sqrt((x1 - x0)**2 + (y1 - y0)**2 + (z1 - z0)**2)
            bonds_length.append(length)
        else:
            bonds_length.append(None)
    #
    bonds_length_norm = []
    tmp = copy.deepcopy(bonds_length)
    while None in tmp:
        tmp.remove(None)
    #print(tmp)
    bond_max = max(tmp)
    bond_min = min(tmp)
    print(bond_max, bond_min)
    for i in range(len(bonds_length)):
        if bonds_length[i] == None:
            bonds_length_norm.append(None)
        else:
            bonds_length_norm.append(
                (bonds_length[i] - bond_min) / (bond_max - bond_min))

    print(bonds_length_norm)
    # ------------------------------------------------------------------------
    # now bonds length are alreay handled
    # we should use different scheme to set the color of them
    # ------------------------------------------------------------------------

    #Scheme I
    # set vriridis cmap color
    from matplotlib import cm
    #cmap = cm.get_cmap("viridis", args.levels)
    #cmap = cm.get_cmap("Blues", args.levels)
    #cmap = cm.get_cmap("Greens", args.levels)
    #cmap = cm.get_cmap("Reds", args.levels)
    #cmap = cm.get_cmap("gist_heat", args.levels)
    #cmap = cm.get_cmap("hsv", args.levels)
    cmap = cm.get_cmap("rainbow", args.levels)
    #cmap = cm.get_cmap("winter", args.levels)
    for i in range(len(bonds)):
        if bonds_length_norm[i] == None:
            pass
        else:
            # there are two ways to get the color for one value, if you use n color in cmap
            # if you pass a integer (0<=value<=(n-1)) to cmap(), you will get the color of it
            # or you can pass a float within([0.0, 1.0]) to cmap(), you will get the color of it
            # as bonds_length_norm is normalized to (0.0-1.0), we could directly pass it to cmap() to get the right color
            color = cmap(bonds_length_norm[i])
            # cmap return RGB in range of (0, 1), we have to multiply it with 255 to get a value between range(0, 255)
            bonds[i].set(
                "Color", "%f, %f, %f, %f" %
                (color[0] * 255, color[1] * 255, color[2] * 255, color[3]))
    # plot the cmap
    # the plot is with no use, what we want is the corresponding color bar.
    tmp_norm = copy.deepcopy(bonds_length_norm)
    while None in tmp_norm:
        tmp_norm.remove(None)
    tmp_value = [
        tmp_norm[i] * (bond_max - bond_min) + bond_min
        for i in range(len(tmp_norm))
    ]
    color_bar = plt.scatter(tmp_norm, tmp_norm, c=tmp_value, cmap=cmap)
    plt.colorbar(color_bar)
    plt.savefig(args.output + ".colorbar.png")
    plt.close()
    """
    #Scheme II
    for i in range(len(bonds)):
        if bonds_length_norm[i] == None:
            pass
        else:
            bonds[i].set("Color", "%f, %f, %f, %f" % (35.3, 35.3, 35.3, bonds_length_norm[3]))    
    """

    # write xsd file
    xsd.write(args.output)
Exemple #13
0
def main():
    parser = argparse.ArgumentParser()

    parser.add_argument("-i",
                        "--images",
                        type=str,
                        nargs=2,
                        required=True,
                        help="the initial and final structure file")

    parser.add_argument("-n",
                        "--nimage",
                        type=int,
                        default=None,
                        required=True,
                        help="number of inter images")

    parser.add_argument("-m",
                        "--moving-atom",
                        type=int,
                        nargs="+",
                        required=True,
                        help="specifying the moving atoms, index start from 0")

    parser.add_argument("-d",
                        "--directory",
                        type=str,
                        default="./",
                        help="directory to put the generated images")

    parser.add_argument("--frac",
                        type=int,
                        default=1,
                        choices=[0, 1],
                        help="1(default): use faractional, 0: use cartesian")

    # ==============================================================
    args = parser.parse_args()

    initial = read_structure(args.images[0])
    final = read_structure(args.images[1])

    inter_images = interpolate(initial=initial,
                               final=final,
                               nimage=args.nimage,
                               moving_atom=args.moving_atom)

    os.system("mkdir -p %s" % os.path.join(args.directory, "%.2d" % (0)))
    write_structure(structure=initial,
                    filepath=os.path.join(args.directory, "%.2d/POSCAR" % (0)),
                    frac=args.frac)
    os.system("mkdir -p %s" % os.path.join(args.directory, "%.2d" %
                                           (args.nimage + 1)))
    write_structure(structure=final,
                    filepath=os.path.join(args.directory,
                                          "%.2d/POSCAR" % (args.nimage + 1)),
                    frac=args.frac)
    for i in range(len(inter_images)):
        os.system("mkdir -p %s" % os.path.join(args.directory, "%.2d" %
                                               (i + 1)))
        write_structure(structure=inter_images[i],
                        filepath=os.path.join(args.directory,
                                              "%.2d/POSCAR" % (i + 1)),
                        frac=args.frac)

    print("===========================================\n")
    print("generate inter images for neb calculation\n")
    print("===========================================\n")

    print("-------------------------------------------\n")
Exemple #14
0
def main():
    parser = argparse.ArgumentParser()

    subparsers = parser.add_subparsers(
        dest="driver",
        title="subcommands",
        description="choose one and only one subcommand")

    subparser = subparsers.add_parser(
        "1d", help="dimension reduction of CHG* to one dimensional")

    subparser.add_argument("-i",
                           "--input",
                           type=str,
                           required=True,
                           help="input vasp *CHG* file, -i *CHG* ")

    subparser.add_argument("--output-structure",
                           type=str,
                           default="chg",
                           help="output stucture contained in *CHG*")

    subparser.add_argument("-o",
                           "--output",
                           type=str,
                           default="chg",
                           help="prefix of the output image file name")

    subparser.add_argument("--levels",
                           type=int,
                           default=10,
                           help="levels of the color map or color bar")

    subparser.add_argument(
        "-z",
        "--z",
        type=float,
        default=1,
        help=
        "a value between 0 and 1, indicat height of in z direction to print the plot"
    )

    subparser.add_argument("--cmap",
                           type=str,
                           default="gray",
                           choices=[
                               "gray", "hot", "afmhot", "Spectral", "plasma",
                               "magma", "hsv", "rainbow", "brg"
                           ])

    subparser.add_argument(
        "--abscissa",
        type=str,
        nargs="+",
        default=["a", "b", "c"],
        choices=["a", "b", "c"],
        help="choose the direction to do the dimension reduction")

    #  add
    subparser = subparsers.add_parser("add", help="add CHG*")

    subparser.add_argument(
        "-i",
        "--input",
        type=str,
        nargs="+",
        required=True,
        help="input vasp *CHG* file, -i CHG1 CHG2 CHG3 ... ")

    subparser.add_argument("--output-structure",
                           type=str,
                           default="chg",
                           help="output stucture contained in *CHG*")

    subparser.add_argument("-o",
                           "--output",
                           type=str,
                           default="chg-merged",
                           help="prefix of the output chg file name")

    # slice
    subparser = subparsers.add_parser("slice",
                                      help="slice CHG* to get 2d DATA")

    subparser.add_argument("-i",
                           "--input",
                           type=str,
                           required=True,
                           help="input vasp *CHG* file, -i *CHG* ")

    subparser.add_argument("--output-structure",
                           type=str,
                           default="chg-slice",
                           help="output stucture contained in *CHG*")

    subparser.add_argument("-o",
                           "--output",
                           type=str,
                           default="chg",
                           help="prefix of the output image file name")

    subparser.add_argument("--levels",
                           type=int,
                           default=10,
                           help="levels of the color map or color bar")

    subparser.add_argument(
        "-z",
        "--z",
        type=float,
        default=1,
        help=
        "a value between 0 and 1, indicat height of in z direction to print the plot"
    )

    subparser.add_argument("--cmap",
                           type=str,
                           default="gray",
                           choices=[
                               "gray", "hot", "afmhot", "Spectral", "plasma",
                               "magma", "hsv", "rainbow", "brg"
                           ])

    subparser.add_argument(
        "--abscissa",
        type=str,
        nargs="+",
        default=["a", "b", "c"],
        choices=["a", "b", "c"],
        help="choose the direction to do the dimension reduction")
    # ==========================================================
    # transfer parameters from the arg subparser to static_run setting
    # ==========================================================

    args = parser.parse_args()

    if args.driver == "1d":

        chg_filepath = args.input

        with open(chg_filepath, "r") as fin:
            chg = fin.readlines()

        for j in range(len(chg)):
            if len(chg[j].split()) == 0:
                first_blank_line = j
                break

        first_augmentation_line = None
        for j in range(len(chg)):
            if "augmentation" in chg[j]:
                first_augmentation_line = j
                break

        os.system("mkdir -p /tmp/pymatflow/")
        with open("/tmp/pymatflow/POSCAR", "w") as fout:
            for j in range(first_blank_line):
                fout.write(chg[j])

        structure = read_structure("/tmp/pymatflow/POSCAR")
        write_structure(structure=structure,
                        filepath=args.output_structure + ".cif")

        a = np.linalg.norm(structure.cell[0])
        b = np.linalg.norm(structure.cell[1])
        c = np.linalg.norm(structure.cell[2])

        # assume three *CHG* have the same ngxf and ngyf ngzf
        ngxf = int(chg[first_blank_line + 1].split()[0])
        ngyf = int(chg[first_blank_line + 1].split()[1])
        ngzf = int(chg[first_blank_line + 1].split()[2])

        if first_augmentation_line == None:
            tmp_str = "".join(chg[first_blank_line + 2:])
            data = np.fromstring(tmp_str, sep="\n").reshape(ngzf, ngyf, ngxf)
        #data = data.reshape(ngzf, ngyf, ngxf)

        # data dimension reduction
        # the unit of value is actually not physical now!
        cell_volume = np.dot(
            np.cross(np.array(structure.cell[0]), np.array(structure.cell[1])),
            np.array(structure.cell[2]))
        cell_volume_per_unit = cell_volume / (ngzf * ngyf * ngxf)

        # value in Vasp *CHG* are \rho(r)_of_electrons * Volume_of_cell, so we should divide it by cell_volume here and time it with cell_volume_per_unit
        # to get the number of electrons per divided unit
        total_electrons = np.sum(data) / cell_volume * cell_volume_per_unit
        #

        print("======================================================\n")
        print("           Information collected\n")
        print("------------------------------------------------------\n")
        print("cell volume: %f (A^3)\n" % cell_volume)
        print("total electrons: %f\n" % total_electrons)

        # unit of data_red_? is e/Anstrom, namely number of electrons per Angstrom
        data_red_a = []
        data_red_b = []
        data_red_c = []
        if "c" in args.abscissa:
            factor = cell_volume_per_unit / cell_volume
            len_ci = c / ngzf
            for ci in range(data.shape[0]):
                tmp = 0
                for bi in range(data.shape[1]):
                    tmp += np.sum(data[ci, bi, :])
                nelect_ci = tmp * factor
                rho_line = nelect_ci / len_ci
                data_red_c.append(rho_line)
        if "b" in args.abscissa:
            factor = cell_volume_per_unit / cell_volume
            len_bi = b / ngyf
            for bi in range(data.shape[1]):
                tmp = 0
                for ai in range(data.shape[2]):
                    tmp += np.sum(data[:, bi, ai])
                nelect_bi = tmp * factor
                rho_line = nelect_bi / len_bi
                data_red_b.append(rho_line)
        if "a" in args.abscissa:
            factor = cell_volume_per_unit / cell_volume
            len_ai = a / ngxf
            for ai in range(data.shape[2]):
                tmp = 0
                for ci in range(data.shape[0]):
                    tmp += np.sum(data[ci, :, ai])
                nelect_ai = tmp * factor
                rho_line = nelect_ai / len_ai
                data_red_a.append(rho_line)

        # output the data and make the plot
        if "c" in args.abscissa:
            with open(args.output + ".1d.c.data", 'w') as fout:
                fout.write(
                    "#c(angstrom) rho(e) (number of electron per Angstrom)\n")
                c_coord = np.linspace(0, c, len(data_red_c))
                for i in range(len(data_red_c)):
                    fout.write("%f %f\n" % (c_coord[i], data_red_c[i]))
            plt.plot(np.linspace(0, c, len(data_red_c)), data_red_c)
            plt.ylabel(r"$\rho (e/\AA)$")
            plt.tight_layout()
            plt.savefig(args.output + ".1d.c.png")
            plt.close()
        if "b" in args.abscissa:
            with open(args.output + ".1d.b.data", 'w') as fout:
                fout.write(
                    "#b(angstrom) rho(e) (number of electron per Angstrom)\n")
                b_coord = np.linspace(0, b, len(data_red_b))
                for i in range(len(data_red_b)):
                    fout.write("%f %f\n" % (b_coord[i], data_red_b[i]))
            plt.plot(np.linspace(0, b, len(data_red_b)), data_red_b)
            plt.ylabel(r"$\rho (e/\AA)$")
            plt.tight_layout()
            plt.savefig(args.output + ".1d.b.png")
            plt.close()
        if "a" in args.abscissa:
            with open(args.output + ".1d.a.data", 'w') as fout:
                fout.write(
                    "#a(angstrom) rho(e) (number of electron per Angstrom)\n")
                a_coord = np.linspace(0, a, len(data_red_a))
                for i in range(len(data_red_a)):
                    fout.write("%f %f\n" % (a_coord[i], data_red_a[i]))
            plt.plot(np.linspace(0, a, len(data_red_a)), data_red_a)
            plt.ylabel(r"$\rho (e/\AA)$")
            plt.tight_layout()
            plt.savefig(args.output + ".1d.a.png")
            plt.close()

    elif args.driver == "add":
        chgs = []
        for item in args.input:
            chgs.append(vasp_chg(item))
        pass

    elif args.driver == "slice":
        chg = vasp_chg(args.input)
        zi = int((chg.data.shape[0] - 1) * args.z)
        img = chg.data[zi, ::, ::]
        img = (img - img.min()) / (img.max() - img.min()) * 255
        # need to do a transform when the cell is not Orthorhombic
        # skew the image
        a = np.array(chg.structure.cell[0])
        b = np.array(chg.structure.cell[1])
        cosangle = a.dot(b) / (np.linalg.norm(a) * np.linalg.norm(b))
        angle = np.arccos(cosangle) * 180 / np.pi
        ax = plt.axes()
        n1 = chg.ngxf
        n2 = chg.ngyf
        n1_right = n1
        n1_left = -(n2 * np.tan((angle - 90) / 180 * np.pi))
        #im = ax.imshow(img, cmap="gray", extent=[n1_left, n1_right, 0, n2], interpolation="none", origin="lower", clip_on=True)
        im = ax.imshow(img,
                       cmap="gray",
                       extent=[0, n1, 0, n2],
                       interpolation="none",
                       origin="lower",
                       clip_on=True)
        #im = plt.imshow(data[i, :, :], cmap="gray")
        trans_data = mtransforms.Affine2D().skew_deg(90 - angle,
                                                     0) + ax.transData
        im.set_transform(trans_data)
        # display intended extent of the image
        x1, x2, y1, y2 = im.get_extent()
        # do not view the line, but it is needed to be plot so the intended image is dispalyed completely
        ax.plot([x1, x2, x2, x1, x1], [y1, y1, y2, y2, y1],
                "y--",
                transform=trans_data,
                visible=False)
        #ax.set_xlim(n1_left, n1_right)
        #ax.set_ylim(0, n2)
        plt.colorbar(im)
        ax.autoscale()
        plt.tight_layout()
        plt.savefig(args.output + "-z-%f.grayscale.png" % args.z)
        plt.close()

        # -----------------------------------------------------------------------------
        # 2D contour plot
        #------------------------------------------------------------------------------

        nx = np.linspace(0, 1, chg.ngxf)
        ny = np.linspace(0, 1, chg.ngyf)
        X, Y = np.meshgrid(
            nx, ny
        )  # now this mesh grid cannot be used directly, we have to calc the real x y for it
        for xi in range(len(nx)):
            for yi in range(len(ny)):
                X[yi, xi] = chg.structure.cell[0][0] * nx[
                    xi] + chg.structure.cell[1][0] * ny[yi]
                Y[yi, xi] = chg.structure.cell[0][1] * nx[
                    xi] + chg.structure.cell[1][1] * ny[yi]

        density_z = chg.data[zi, :, :] / chg.cell_volume
        # export data
        with open(args.output + '.slice-z.%f.data' % args.z, "w") as fout:
            fout.write("# x y val(e/Angstrom^3)\n")
            for xi in range(len(nx)):
                for yi in range(len(ny)):
                    fout.write("%f %f %f\n" %
                               (X[xi, yi], Y[xi, yi], density_z[xi, yi]))

        Z = chg.data[zi, :, :]
        Z = (Z - Z.min()) / (Z.max() - Z.min()) * 255
        # fill color, three color are divided into three layer(6)
        # cmap = plt.cm.hot means using thermostat plot(graduated red yellow)
        #cset = plt.contourf(x, y, z, levels=args.levels, cmap=plt.cm.hot)
        #cset = plt.contourf(x, y, z, levels=args.levels, cmap=plt.cm.gray)
        cset = plt.contourf(X, Y, Z, levels=args.levels, cmap=args.cmap)
        contour = plt.contour(X, Y, Z, levels=[20, 40], colors='k')
        plt.colorbar(cset)
        plt.autoscale()
        plt.tight_layout()
        plt.axis("equal")  # set axis equally spaced
        #plt.show()
        plt.xlabel('x')
        plt.ylabel('y')
        plt.savefig(args.output + ".2d-slice-z-%f.png" % args.z)
        plt.close()