def test_expand(self):
     self.maxDiff = None
     spec = get_spec('GW')
     tests = SingleAbinitGWWork(structure, spec).convs
     tests_out = {'nscf_nbands': {'test_range': (40,),
                                  'control': 'gap', 'method': 'set_bands', 'level': 'nscf'},
                  'ecut': {'test_range': (52, 48, 44),
                           'control': 'e_ks_max', 'method': 'direct', 'level': 'scf'},
                  'ecuteps': {'test_range': (4, 8, 12, 16, 20),
                              'control': 'gap', 'method': 'direct', 'level': 'sigma'}}
     self.assertEqual(expand(tests, 1), tests_out)
     spec.data['code'] = 'VASP'
     spec.update_code_interface()
     tests = GWG0W0VaspInputSet(structure, spec).convs
     tests_out = {'ENCUTGW': {'test_range': (200, 400, 600, 800), 'control': 'gap', 'method': 'incar_settings'}}
     self.assertEqual(expand(tests, 1), tests_out)
Exemple #2
0
 def test_expand(self):
     self.maxDiff = None
     spec = get_spec('GW')
     tests = SingleAbinitGWWork(structure, spec).convs
     tests_out = {
         'nscf_nbands': {
             'test_range': (40, ),
             'control': 'gap',
             'method': 'set_bands',
             'level': 'nscf'
         },
         'ecut': {
             'test_range': (50, 48, 46, 44),
             'control': 'e_ks_max',
             'method': 'direct',
             'level': 'scf'
         },
         'ecuteps': {
             'test_range': (4, 8, 12, 16, 20),
             'control': 'gap',
             'method': 'direct',
             'level': 'sigma'
         }
     }
     self.assertEqual(expand(tests, 1), tests_out)
     spec.data['code'] = 'VASP'
     spec.update_code_interface()
     tests = GWG0W0VaspInputSet(structure, spec).convs
     tests_out = {
         'ENCUTGW': {
             'test_range': (200, 400, 600, 800),
             'control': 'gap',
             'method': 'incar_settings'
         }
     }
     self.assertEqual(expand(tests, 1), tests_out)
Exemple #3
0
    def excecute_flow(self, structure, spec_data):
        """
        excecute spec prepare input/jobfiles or submit to fw for a given structure
        for vasp the different jobs are created into a flow
        todo this should actually create and excecute a VaspGWWorkFlow(GWWorkflow)
        """
        ### general part for the base class
        grid = 0
        all_done = False
        converged = is_converged(False, structure)
        try:
            grid = read_grid_from_file(s_name(structure)+".full_res")['grid']
            all_done = read_grid_from_file(s_name(structure)+".full_res")['all_done']
        except (IOError, OSError):
            pass

        if all_done:
            print('| all is done for this material')
            return

        ### specific part

        if spec_data['mode'] == 'fw':
            fw_work_flow = VaspGWFWWorkFlow()
        else:
            fw_work_flow = []
        if spec_data['test'] or spec_data['converge']:
            if spec_data['test']:
                tests_prep = GWscDFTPrepVaspInputSet(structure, spec_data).tests
                tests_prep.update(GWDFTDiagVaspInputSet(structure, spec_data).tests)
            elif spec_data['converge'] and converged:
                tests_prep = self.get_conv_res_test(spec_data, structure)['tests_prep']
            else:
                tests_prep = GWscDFTPrepVaspInputSet(structure, spec_data).convs
                tests_prep.update(GWDFTDiagVaspInputSet(structure, spec_data).convs)
                if grid > 0:
                    tests_prep = expand(tests=tests_prep, level=grid)
                print(tests_prep)
            for test_prep in tests_prep:
                print('setting up test for: ' + test_prep)
                for value_prep in tests_prep[test_prep]['test_range']:
                    print("**" + str(value_prep) + "**")
                    option = {'test_prep': test_prep, 'value_prep': value_prep}
                    self.create_job(spec_data, structure, 'prep', fw_work_flow, converged, option)
                    for job in spec_data['jobs'][1:]:
                        if job == 'G0W0':
                            if spec_data['test']:
                                tests = GWG0W0VaspInputSet(structure, spec_data).tests
                            elif spec_data['converge'] and converged:
                                tests = self.get_conv_res_test(spec_data, structure)['tests']
                            else:
                                tests = GWG0W0VaspInputSet(structure, spec_data).convs
                                if grid > 0:
                                    tests = expand(tests=tests, level=grid)
                                print(tests)
                        if job in ['GW0', 'scGW0']:
                            input_set = GWG0W0VaspInputSet(structure, spec_data)
                            input_set.gw0_on()
                            if spec_data['test']:
                                tests = input_set.tests
                            else:
                                tests = input_set.tests
                        for test in tests:
                            print('    setting up test for: ' + test)
                            for value in tests[test]['test_range']:
                                print("    **" + str(value) + "**")
                                option.update({'test': test, 'value': value})
                                self.create_job(spec_data, structure, job, fw_work_flow, converged, option)
Exemple #4
0
    def create(self):
        """
        create single abinit G0W0 flow
        """
        manager = 'slurm' if 'ceci' in self.spec['mode'] else 'shell'
        # an AbiStructure object has an overwritten version of get_sorted_structure that sorts according to Z
        # this could also be pulled into the constructor of Abistructure
        #abi_structure = self.structure.get_sorted_structure()
        from abipy import abilab
        item = copy.copy(self.structure.item)
        self.structure.__class__ = abilab.Structure
        self.structure = self.structure.get_sorted_structure_z()
        self.structure.item = item
        abi_structure = self.structure
        manager = TaskManager.from_user_config()
        # Initialize the flow.
        flow = Flow(self.work_dir, manager, pickle_protocol=0)
        # flow = Flow(self.work_dir, manager)

        # kpoint grid defined over density 40 > ~ 3 3 3
        if self.spec['converge'] and not self.all_converged:
            # (2x2x2) gamma centered mesh for the convergence test on nbands and ecuteps
            # if kp_in is present in the specs a kp_in X kp_in x kp_in mesh is used for the convergence studie
            if 'kp_in' in self.spec.keys():
                if self.spec['kp_in'] > 9:
                    print('WARNING:\nkp_in should be < 10 to generate an n x n x n mesh\nfor larger values a grid with '
                          'density kp_in will be generated')
                scf_kppa = self.spec['kp_in']
            else:
                scf_kppa = 2
        else:
            # use the specified density for the final calculation with the converged nbands and ecuteps of other
            # stand alone calculations
            scf_kppa = self.spec['kp_grid_dens']
        gamma = True

        # 'standard' parameters for stand alone calculation
        nb = self.get_bands(self.structure)
        nscf_nband = [10 * nb]

        nksmall = None
        ecuteps = [8]
        ecutsigx = 44

        extra_abivars = dict(
            paral_kgb=1,
            inclvkb=2,
            ecut=44,
            pawecutdg=88,
            gwmem='10',
            getden=-1,
            istwfk="*1",
            timopt=-1,
            nbdbuf=8
        )

        # read user defined extra abivars from file  'extra_abivars' should be dictionary
        extra_abivars.update(read_extra_abivars())
        #self.bands_fac = 0.5 if 'gwcomp' in extra_abivars.keys() else 1
        #self.convs['nscf_nbands']['test_range'] = tuple([self.bands_fac*x for x in self.convs['nscf_nbands']['test_range']])

        response_models = ['godby']
        if 'ppmodel' in extra_abivars.keys():
            response_models = [extra_abivars.pop('ppmodel')]

        if self.option is not None:
            for k in self.option.keys():
                if k in ['ecuteps', 'nscf_nbands']:
                    pass
                else:
                    extra_abivars.update({k: self.option[k]})
                    if k == 'ecut':
                        extra_abivars.update({'pawecutdg': self.option[k]*2})

        try:
            grid = read_grid_from_file(s_name(self.structure)+".full_res")['grid']
            all_done = read_grid_from_file(s_name(self.structure)+".full_res")['all_done']
            workdir = os.path.join(s_name(self.structure), 'w'+str(grid))
        except (IOError, OSError):
            grid = 0
            all_done = False
            workdir = None

        if not all_done:
            if (self.spec['test'] or self.spec['converge']) and not self.all_converged:
                if self.spec['test']:
                    print('| setting test calculation')
                    tests = SingleAbinitGWWork(self.structure, self.spec).tests
                    response_models = []
                else:
                    if grid == 0:
                        print('| setting convergence calculations for grid 0')
                        #tests = SingleAbinitGWWorkFlow(self.structure, self.spec).convs
                        tests = self.convs
                    else:
                        print('| extending grid')
                        #tests = expand(SingleAbinitGWWorkFlow(self.structure, self.spec).convs, grid)
                        tests = expand(self.convs, grid)
                ecuteps = []
                nscf_nband = []
                for test in tests:
                    if tests[test]['level'] == 'scf':
                        if self.option is None:
                            extra_abivars.update({test + '_s': tests[test]['test_range']})
                        elif test in self.option:
                            extra_abivars.update({test: self.option[test]})
                        else:
                            extra_abivars.update({test + '_s': tests[test]['test_range']})
                    else:
                        for value in tests[test]['test_range']:
                            if test == 'nscf_nbands':
                                nscf_nband.append(value * self.get_bands(self.structure))
                                #scr_nband takes nscf_nbands if not specified
                                #sigma_nband takes scr_nbands if not specified
                            if test == 'ecuteps':
                                ecuteps.append(value)
                            if test == 'response_model':
                                response_models.append(value)
            elif self.all_converged:
                print('| setting up for testing the converged values at the high kp grid ')
                # add a bandstructure and dos calculation
                nksmall = 30
                # in this case a convergence study has already been performed.
                # The resulting parameters are passed as option
                ecuteps = [self.option['ecuteps'], self.option['ecuteps'] + self.convs['ecuteps']['test_range'][1] -
                                                   self.convs['ecuteps']['test_range'][0]]
                nscf_nband = [self.option['nscf_nbands'], self.option['nscf_nbands'] + self.convs['nscf_nbands'][
                    'test_range'][1] - self.convs['nscf_nbands']['test_range'][0]]
                # for option in self.option:
                #    if option not in ['ecuteps', 'nscf_nband']:
                #        extra_abivars.update({option + '_s': self.option[option]})
        else:
            print('| all is done for this material')
            return

        logger.info('ecuteps : ', ecuteps)
        logger.info('extra   : ', extra_abivars)
        logger.info('nscf_nb : ', nscf_nband)

        work = g0w0_extended_work(abi_structure, self.pseudo_table, scf_kppa, nscf_nband, ecuteps, ecutsigx,
                             accuracy="normal", spin_mode="unpolarized", smearing=None, response_models=response_models,
                             charge=0.0, sigma_nband=None, scr_nband=None, gamma=gamma, nksmall=nksmall, **extra_abivars)

        flow.register_work(work, workdir=workdir)

        return flow.allocate()
Exemple #5
0
    def excecute_flow(self, structure, spec_data):
        """
        excecute spec prepare input/jobfiles or submit to fw for a given structure
        for vasp the different jobs are created into a flow
        todo this should actually create and excecute a VaspGWWorkFlow(GWWorkflow)
        """
        ### general part for the base class
        grid = 0
        all_done = False
        converged = is_converged(False, structure)
        try:
            grid = read_grid_from_file(s_name(structure) + ".full_res")['grid']
            all_done = read_grid_from_file(s_name(structure) +
                                           ".full_res")['all_done']
        except (IOError, OSError):
            pass

        if all_done:
            print('| all is done for this material')
            return

        ### specific part

        if spec_data['mode'] == 'fw':
            fw_work_flow = VaspGWFWWorkFlow()
        else:
            fw_work_flow = []
        if spec_data['test'] or spec_data['converge']:
            if spec_data['test']:
                tests_prep = GWscDFTPrepVaspInputSet(structure,
                                                     spec_data).tests
                tests_prep.update(
                    GWDFTDiagVaspInputSet(structure, spec_data).tests)
            elif spec_data['converge'] and converged:
                tests_prep = self.get_conv_res_test(spec_data,
                                                    structure)['tests_prep']
            else:
                tests_prep = GWscDFTPrepVaspInputSet(structure,
                                                     spec_data).convs
                tests_prep.update(
                    GWDFTDiagVaspInputSet(structure, spec_data).convs)
                if grid > 0:
                    tests_prep = expand(tests=tests_prep, level=grid)
                print(tests_prep)
            for test_prep in tests_prep:
                print('setting up test for: ' + test_prep)
                for value_prep in tests_prep[test_prep]['test_range']:
                    print("**" + str(value_prep) + "**")
                    option = {'test_prep': test_prep, 'value_prep': value_prep}
                    self.create_job(spec_data, structure, 'prep', fw_work_flow,
                                    converged, option)
                    for job in spec_data['jobs'][1:]:
                        if job == 'G0W0':
                            if spec_data['test']:
                                tests = GWG0W0VaspInputSet(
                                    structure, spec_data).tests
                            elif spec_data['converge'] and converged:
                                tests = self.get_conv_res_test(
                                    spec_data, structure)['tests']
                            else:
                                tests = GWG0W0VaspInputSet(
                                    structure, spec_data).convs
                                if grid > 0:
                                    tests = expand(tests=tests, level=grid)
                                print(tests)
                        if job in ['GW0', 'scGW0']:
                            input_set = GWG0W0VaspInputSet(
                                structure, spec_data)
                            input_set.gw0_on()
                            if spec_data['test']:
                                tests = input_set.tests
                            else:
                                tests = input_set.tests
                        for test in tests:
                            print('    setting up test for: ' + test)
                            for value in tests[test]['test_range']:
                                print("    **" + str(value) + "**")
                                option.update({'test': test, 'value': value})
                                self.create_job(spec_data, structure, job,
                                                fw_work_flow, converged,
                                                option)
Exemple #6
0
    def create(self):
        """
        create single abinit G0W0 flow
        """
        manager = 'slurm' if 'ceci' in self.spec['mode'] else 'shell'
        # an AbiStructure object has an overwritten version of get_sorted_structure that sorts according to Z
        # this could also be pulled into the constructor of Abistructure
        #abi_structure = self.structure.get_sorted_structure()
        from abipy import abilab
        item = copy.copy(self.structure.item)
        self.structure.__class__ = abilab.Structure
        self.structure = self.structure.get_sorted_structure_z()
        self.structure.item = item
        abi_structure = self.structure
        manager = TaskManager.from_user_config()
        # Initialize the flow.
        flow = Flow(self.work_dir, manager, pickle_protocol=0)
        # flow = Flow(self.work_dir, manager)

        # kpoint grid defined over density 40 > ~ 3 3 3
        if self.spec['converge'] and not self.all_converged:
            # (2x2x2) gamma centered mesh for the convergence test on nbands and ecuteps
            # if kp_in is present in the specs a kp_in X kp_in x kp_in mesh is used for the convergence studie
            if 'kp_in' in self.spec.keys():
                if self.spec['kp_in'] > 9:
                    print(
                        'WARNING:\nkp_in should be < 10 to generate an n x n x n mesh\nfor larger values a grid with '
                        'density kp_in will be generated')
                scf_kppa = self.spec['kp_in']
            else:
                scf_kppa = 2
        else:
            # use the specified density for the final calculation with the converged nbands and ecuteps of other
            # stand alone calculations
            scf_kppa = self.spec['kp_grid_dens']
        gamma = True

        # 'standard' parameters for stand alone calculation
        scf_nband = self.get_bands(self.structure)
        nscf_nband = [10 * scf_nband]

        nksmall = None
        ecuteps = [8]
        ecutsigx = 44

        extra_abivars = dict(paral_kgb=1,
                             inclvkb=2,
                             ecut=44,
                             pawecutdg=88,
                             gwmem='10',
                             getden=-1,
                             istwfk="*1",
                             timopt=-1,
                             nbdbuf=8,
                             prtsuscep=0)

        # read user defined extra abivars from file  'extra_abivars' should be dictionary
        extra_abivars.update(read_extra_abivars())
        #self.bands_fac = 0.5 if 'gwcomp' in extra_abivars.keys() else 1
        #self.convs['nscf_nbands']['test_range'] = tuple([self.bands_fac*x for x in self.convs['nscf_nbands']['test_range']])

        response_models = ['godby']
        if 'ppmodel' in extra_abivars.keys():
            response_models = [extra_abivars.pop('ppmodel')]

        if self.option is not None:
            for k in self.option.keys():
                if k in ['ecuteps', 'nscf_nbands']:
                    pass
                else:
                    extra_abivars.update({k: self.option[k]})
                    if k == 'ecut':
                        extra_abivars.update({'pawecutdg': self.option[k] * 2})

        try:
            grid = read_grid_from_file(s_name(self.structure) +
                                       ".full_res")['grid']
            all_done = read_grid_from_file(
                s_name(self.structure) + ".full_res")['all_done']
            workdir = os.path.join(s_name(self.structure), 'w' + str(grid))
        except (IOError, OSError):
            grid = 0
            all_done = False
            workdir = None

        if not all_done:
            if (self.spec['test']
                    or self.spec['converge']) and not self.all_converged:
                if self.spec['test']:
                    print('| setting test calculation')
                    tests = SingleAbinitGWWork(self.structure, self.spec).tests
                    response_models = []
                else:
                    if grid == 0:
                        print('| setting convergence calculations for grid 0')
                        #tests = SingleAbinitGWWorkFlow(self.structure, self.spec).convs
                        tests = self.convs
                    else:
                        print('| extending grid')
                        #tests = expand(SingleAbinitGWWorkFlow(self.structure, self.spec).convs, grid)
                        tests = expand(self.convs, grid)
                ecuteps = []
                nscf_nband = []
                for test in tests:
                    if tests[test]['level'] == 'scf':
                        if self.option is None:
                            extra_abivars.update(
                                {test + '_s': tests[test]['test_range']})
                        elif test in self.option:
                            extra_abivars.update({test: self.option[test]})
                        else:
                            extra_abivars.update(
                                {test + '_s': tests[test]['test_range']})
                    else:
                        for value in tests[test]['test_range']:
                            if test == 'nscf_nbands':
                                nscf_nband.append(
                                    value * self.get_bands(self.structure))
                                #scr_nband takes nscf_nbands if not specified
                                #sigma_nband takes scr_nbands if not specified
                            if test == 'ecuteps':
                                ecuteps.append(value)
                            if test == 'response_model':
                                response_models.append(value)
            elif self.all_converged:
                print(
                    '| setting up for testing the converged values at the high kp grid '
                )
                # add a bandstructure and dos calculation
                if os.path.isfile('bands'):
                    nksmall = -30
                    #negative value > only bandstructure
                else:
                    nksmall = 30
                # in this case a convergence study has already been performed.
                # The resulting parameters are passed as option
                ecuteps = [
                    self.option['ecuteps'], self.option['ecuteps'] +
                    self.convs['ecuteps']['test_range'][1] -
                    self.convs['ecuteps']['test_range'][0]
                ]
                nscf_nband = [
                    self.option['nscf_nbands'], self.option['nscf_nbands'] +
                    self.convs['nscf_nbands']['test_range'][1] -
                    self.convs['nscf_nbands']['test_range'][0]
                ]
                # for option in self.option:
                #    if option not in ['ecuteps', 'nscf_nband']:
                #        extra_abivars.update({option + '_s': self.option[option]})
        else:
            print('| all is done for this material')
            return

        logger.info('ecuteps : ', ecuteps)
        logger.info('extra   : ', extra_abivars)
        logger.info('nscf_nb : ', nscf_nband)

        work = g0w0_extended_work(abi_structure,
                                  self.pseudo_table,
                                  scf_kppa,
                                  nscf_nband,
                                  ecuteps,
                                  ecutsigx,
                                  scf_nband,
                                  accuracy="normal",
                                  spin_mode="unpolarized",
                                  smearing=None,
                                  response_models=response_models,
                                  charge=0.0,
                                  sigma_nband=None,
                                  scr_nband=None,
                                  gamma=gamma,
                                  nksmall=nksmall,
                                  **extra_abivars)

        flow.register_work(work, workdir=workdir)

        return flow.allocate()