Exemple #1
0
    def from_posterior(self, param, samples):
        smin, smax = np.min(samples), np.max(samples)
        width = smax - smin
        x = np.linspace(smin, smax, 100)
        y = stats.gaussian_kde(samples.T)(x)

        # what was never sampled should have a small probability but not 0,
        # so we'll extend the domain and use linear approximation of density on it
        x = np.concatenate([[x[0] - 3 * width], x, [x[-1] + 3 * width]])
        y = np.concatenate([[0], y, [0]])
        return Interpolated(param, x, y)
def from_epdf(param, ambient_counts):
    from scipy.stats import gaussian_kde
    smin, smax = np.min(ambient_counts), np.max(ambient_counts)
    width = smax - smin
    x = np.linspace(smin, smax, 200)
    y = gaussian_kde(ambient_counts)(x)
    x = np.concatenate([[-1e9,-100,0], x, [x[-1] + np.log10(10)]])
    y = np.concatenate([[1e-1000,1e-200,1e-2], y, [1e-20]])
    sns.scatterplot(x,y)
    plt.show()
    #return pm.Normal('x', mu=np.mean(ambient_counts), sigma=np.std(ambient_counts))
    return Interpolated(param, x, y)