Exemple #1
0
    def test_mmp_v2(self):
        array_path = os.path.join(os.getcwd(), DATA_PATH + "mmp_b.mat")
        mat_contents = loadmat(file_name=array_path)
        A = mat_contents["A"][0]
        B = mat_contents["B"][0]
        prev_obs = mat_contents["obs_idx"].astype("int64")
        policy = mat_contents["policy"].astype("int64") - 1
        curr_t = mat_contents["t"][0, 0].astype("int64") - 1
        t_horizon = mat_contents["t_horizon"][0, 0].astype("int64")
        prev_actions = mat_contents["previous_actions"].astype("int64") - 1
        result_spm = mat_contents["qs"][0]
        _ = mat_contents["likelihoods"][0]

        num_obs, num_states, _, num_factors = get_model_dimensions(A, B)
        prev_obs = convert_observation_array(
            prev_obs[:, max(0, curr_t - t_horizon):(curr_t + 1)], num_obs)

        ll_seq = get_joint_likelihood_seq(A, prev_obs, num_states)
        qs_seq = run_mmp_v2(A,
                            B,
                            ll_seq,
                            policy,
                            prev_actions,
                            num_iter=5,
                            grad_descent=True)

        result_pymdp = qs_seq[-1]
        for f in range(num_factors):
            self.assertTrue(
                np.isclose(result_spm[f].squeeze(), result_pymdp[f]).all())
Exemple #2
0
    def test_mmp_d(self):
        """ Testing our SPM-ified version of `run_MMP` with
        2 hidden state factors & 2 outcome modalities, at the final
        timestep of the generative process (boundary condition test)
        @NOTE: mmp_d.mat test has issues with the prediction errors. But the future messages are 
        totally fine (even at the last timestep of variational iteration."""

        array_path = os.path.join(os.getcwd(), DATA_PATH + "mmp_d.mat")
        mat_contents = loadmat(file_name=array_path)

        A = mat_contents["A"][0]
        B = mat_contents["B"][0]
        prev_obs = mat_contents["obs_idx"].astype("int64")
        policy = mat_contents["policy"].astype("int64") - 1
        curr_t = mat_contents["t"][0, 0].astype("int64") - 1
        t_horizon = mat_contents["t_horizon"][0, 0].astype("int64")
        prev_actions = mat_contents["previous_actions"].astype("int64") - 1
        result_spm = mat_contents["qs"][0]
        likelihoods = mat_contents["likelihoods"][0]

        num_obs, num_states, _, num_factors = get_model_dimensions(A, B)
        prev_obs = convert_observation_array(
            prev_obs[:, max(0, curr_t - t_horizon):(curr_t + 1)], num_obs)

        prev_actions = prev_actions[(max(0, curr_t - t_horizon) - 1):, :]
        prior = np.empty(num_factors, dtype=object)
        for f in range(num_factors):
            uniform = np.ones(num_states[f]) / num_states[f]
            prior[f] = B[f][:, :, prev_actions[0, f]].dot(uniform)

        lh_seq = get_joint_likelihood_seq(A, prev_obs, num_states)

        qs_seq, _ = run_mmp(lh_seq,
                            B,
                            policy,
                            prev_actions[1:],
                            prior=prior,
                            num_iter=5,
                            grad_descent=True,
                            last_timestep=True)

        result_pymdp = qs_seq[-1]

        for f in range(num_factors):
            self.assertTrue(
                np.isclose(result_spm[f].squeeze(), result_pymdp[f]).all())
Exemple #3
0
    def test_mmp_a(self):
        """
        Testing our SPM-ified version of `run_MMP` with
            1 hidden state factor & 1 outcome modality, at a random fixed
            timestep during the generative process
        """

        array_path = os.path.join(os.getcwd(), DATA_PATH + "mmp_a.mat")
        mat_contents = loadmat(file_name=array_path)

        A = mat_contents["A"][0]
        B = mat_contents["B"][0]
        prev_obs = mat_contents["obs_idx"].astype("int64")
        policy = mat_contents["policy"].astype("int64") - 1
        curr_t = mat_contents["t"][0, 0].astype("int64") - 1
        t_horizon = mat_contents["t_horizon"][0, 0].astype("int64")
        prev_actions = mat_contents["previous_actions"].astype("int64") - 1
        result_spm = mat_contents["qs"][0]
        likelihoods = mat_contents["likelihoods"][0]

        num_obs, num_states, _, num_factors = get_model_dimensions(A, B)
        prev_obs = convert_observation_array(
            prev_obs[:, max(0, curr_t - t_horizon):(curr_t + 1)], num_obs)

        prev_actions = prev_actions[(max(0, curr_t - t_horizon) - 1):, :]
        prior = np.empty(num_factors, dtype=object)
        for f in range(num_factors):
            uniform = np.ones(num_states[f]) / num_states[f]
            prior[f] = B[f][:, :, prev_actions[0, f]].dot(uniform)

        ll_seq = get_joint_likelihood_seq(A, prev_obs, num_states)
        qs_seq = run_mmp_v2(A,
                            B,
                            ll_seq,
                            policy,
                            prev_actions[1:],
                            prior=prior,
                            num_iter=5,
                            grad_descent=True)

        result_pymdp = qs_seq[-1]
        for f in range(num_factors):
            self.assertTrue(
                np.isclose(result_spm[f].squeeze(), result_pymdp[f]).all())
Exemple #4
0
    def test_mmp_c(self):
        """ Testing our SPM-ified version of `run_MMP` with
         2 hidden state factors & 2 outcome modalities, at the very first
         timestep of the generative process (boundary condition test). So there 
         are no previous actions"""

        array_path = os.path.join(os.getcwd(), DATA_PATH + "mmp_c.mat")
        mat_contents = loadmat(file_name=array_path)

        A = mat_contents["A"][0]
        B = mat_contents["B"][0]
        prev_obs = mat_contents["obs_idx"].astype("int64")
        policy = mat_contents["policy"].astype("int64") - 1
        curr_t = mat_contents["t"][0, 0].astype("int64") - 1
        t_horizon = mat_contents["t_horizon"][0, 0].astype("int64")
        # prev_actions = mat_contents["previous_actions"].astype("int64") - 1
        result_spm = mat_contents["qs"][0]
        likelihoods = mat_contents["likelihoods"][0]

        num_obs, num_states, _, num_factors = get_model_dimensions(A, B)
        prev_obs = convert_observation_array(
            prev_obs[:, max(0, curr_t - t_horizon):(curr_t + 1)], num_obs)

        # prev_actions = prev_actions[(max(0, curr_t - t_horizon)) :, :]
        lh_seq = get_joint_likelihood_seq(A, prev_obs, num_states)
        qs_seq, _ = run_mmp(lh_seq,
                            B,
                            policy,
                            prev_actions=None,
                            prior=None,
                            num_iter=5,
                            grad_descent=True)

        result_pymdp = qs_seq[-1]
        for f in range(num_factors):
            self.assertTrue(
                np.isclose(result_spm[f].squeeze(), result_pymdp[f]).all())
Exemple #5
0
    def test_mmp_fixedpoints(self):

        array_path = os.path.join(os.getcwd(), DATA_PATH + "mmp_a.mat")
        mat_contents = loadmat(file_name=array_path)

        A = mat_contents["A"][0]
        B = mat_contents["B"][0]
        prev_obs = mat_contents["obs_idx"].astype("int64")
        policy = mat_contents["policy"].astype("int64") - 1
        curr_t = mat_contents["t"][0, 0].astype("int64") - 1
        t_horizon = mat_contents["t_horizon"][0, 0].astype("int64")
        prev_actions = mat_contents["previous_actions"].astype("int64") - 1
        result_spm = mat_contents["qs"][0]
        likelihoods = mat_contents["likelihoods"][0]

        num_obs, num_states, _, num_factors = get_model_dimensions(A, B)
        prev_obs = convert_observation_array(
            prev_obs[:, max(0, curr_t - t_horizon):(curr_t + 1)], num_obs)

        prev_actions = prev_actions[(max(0, curr_t - t_horizon) - 1):, :]
        prior = np.empty(num_factors, dtype=object)
        for f in range(num_factors):
            uniform = np.ones(num_states[f]) / num_states[f]
            prior[f] = B[f][:, :, prev_actions[0, f]].dot(uniform)

        lh_seq = get_joint_likelihood_seq(A, prev_obs, num_states)
        qs_seq, F = run_mmp(lh_seq,
                            B,
                            policy,
                            prev_actions[1:],
                            prior=prior,
                            num_iter=5,
                            grad_descent=False,
                            save_vfe_seq=True)

        self.assertTrue((np.diff(np.array(F)) < 0).all())
Exemple #6
0
def run_mmp(lh_seq,
            B,
            policy,
            prev_actions=None,
            prior=None,
            num_iter=10,
            grad_descent=False,
            tau=0.25,
            last_timestep=False,
            save_vfe_seq=False):
    """
    Marginal message passing scheme for updating posterior beliefs about multi-factor hidden states over time, 
    conditioned on a particular policy.
    Parameters:
    --------------
    `lh_seq`[numpy object array]:
        Likelihoods of hidden state factors given a sequence of observations over time. This is logged beforehand
    `B`[numpy object array]:
        Transition likelihood of the generative model, mapping from hidden states at T to hidden states at T+1. One B matrix per modality (e.g. `B[f]` corresponds to f-th factor's B matrix)
        This is used in inference to compute the 'forward' and 'backward' messages conveyed between beliefs about temporally-adjacent timepoints.
    `policy` [2-D numpy.ndarray]:
        Matrix of shape (policy_len, num_control_factors) that indicates the indices of each action (control state index) upon timestep t and control_factor f in the element `policy[t,f]` for a given policy.
    `prev_actions` [None or 2-D numpy.ndarray]:
        If provided, should be a matrix of previous actions of shape (infer_len, num_control_factors) taht indicates the indices of each action (control state index) taken in the past (up until the current timestep).
    `prior`[None or numpy object array]:
        If provided, this a numpy object array with one sub-array per hidden state factor, that stores the prior beliefs about initial states (at t = 0, relative to `infer_len`).
    `num_iter`[Int]:
        Number of variational iterations
    `grad_descent` [Bool]:
        Flag for whether to use gradient descent (predictive coding style)
    `tau` [Float]:
        Decay constant for use in `grad_descent` version
    `last_timestep` [Bool]:
        Flag for whether we are at the last timestep of belief updating
    `save_vfe_seq` [Bool]:
        Flag for whether to save the sequence of variational free energies over time (for this policy). If `False`, then VFE is integrated across time/iterations.
    Returns:
    --------------
    `qs_seq`[list]: the sequence of beliefs about the different hidden state factors over time, one multi-factor posterior belief per timestep in `infer_len`
    `F`[Float or list, depending on setting of save_vfe_seq]
    """

    # window
    past_len = len(lh_seq)
    future_len = policy.shape[0]

    if last_timestep:
        infer_len = past_len + future_len - 1
    else:
        infer_len = past_len + future_len

    future_cutoff = past_len + future_len - 2

    # dimensions
    _, num_states, _, num_factors = get_model_dimensions(A=None, B=B)
    B = to_arr_of_arr(B)

    # beliefs
    qs_seq = obj_array(infer_len)
    for t in range(infer_len):
        qs_seq[t] = obj_array_uniform(num_states)

    # last message
    qs_T = obj_array_zeros(num_states)

    # prior
    if prior is None:
        prior = obj_array_uniform(num_states)

    # transposed transition
    trans_B = obj_array(num_factors)

    for f in range(num_factors):
        trans_B[f] = spm_norm(np.swapaxes(B[f], 0, 1))

    # full policy
    if prev_actions is None:
        prev_actions = np.zeros((past_len, policy.shape[1]))
    policy = np.vstack((prev_actions, policy))

    # initialise variational free energy of policy (accumulated over time)

    if save_vfe_seq:
        F = []
        F.append(0.0)
    else:
        F = 0.0

    for itr in range(num_iter):
        for t in range(infer_len):
            for f in range(num_factors):
                # likelihood
                if t < past_len:
                    lnA = spm_log(spm_dot(lh_seq[t], qs_seq[t], [f]))
                else:
                    lnA = np.zeros(num_states[f])

                # past message
                if t == 0:
                    lnB_past = spm_log(prior[f])
                else:
                    past_msg = B[f][:, :, int(policy[t - 1,
                                                     f])].dot(qs_seq[t - 1][f])
                    lnB_past = spm_log(past_msg)

                # future message
                if t >= future_cutoff:
                    lnB_future = qs_T[f]
                else:
                    future_msg = trans_B[f][:, :, int(policy[t, f])].dot(
                        qs_seq[t + 1][f])
                    lnB_future = spm_log(future_msg)

                # inference
                if grad_descent:
                    lnqs = spm_log(qs_seq[t][f])
                    coeff = 1 if (t >= future_cutoff) else 2
                    err = (coeff * lnA + lnB_past + lnB_future) - coeff * lnqs
                    err -= err.mean()
                    lnqs = lnqs + tau * err
                    qs_seq[t][f] = softmax(lnqs)
                    if (t == 0) or (t == (infer_len - 1)):
                        F += +0.5 * lnqs.dot(0.5 * err)
                    else:
                        F += lnqs.dot(
                            0.5 * (err - (num_factors - 1) * lnA / num_factors)
                        )  # @NOTE: not sure why Karl does this in SPM_MDP_VB_X, we should look into this
                else:
                    qs_seq[t][f] = softmax(lnA + lnB_past + lnB_future)

            if not grad_descent:

                if save_vfe_seq:
                    if t < past_len:
                        F.append(
                            F[-1] +
                            calc_free_energy(qs_seq[t],
                                             prior,
                                             num_factors,
                                             likelihood=spm_log(lh_seq[t]))[0])
                    else:
                        F.append(
                            F[-1] +
                            calc_free_energy(qs_seq[t], prior, num_factors)[0])
                else:
                    if t < past_len:
                        F += calc_free_energy(qs_seq[t],
                                              prior,
                                              num_factors,
                                              likelihood=spm_log(lh_seq[t]))
                    else:
                        F += calc_free_energy(qs_seq[t], prior, num_factors)

    return qs_seq, F
Exemple #7
0
def spm_MDP_G(A, x):
    """
    Calculates the Bayesian surprise in the same way as spm_MDP_G.m does in 
    the original matlab code.
    
    Parameters
    ----------
    A (numpy ndarray or array-object):
        array assigning likelihoods of observations/outcomes under the various 
        hidden state configurations
    
    x (numpy ndarray or array-object):
        Categorical distribution presenting probabilities of hidden states 
        (this can also be interpreted as the predictive density over hidden 
        states/causes if you're calculating the expected Bayesian surprise)
        
    Returns
    -------
    G (float):
        the (expected or not) Bayesian surprise under the density specified by x --
        namely, this scores how much an expected observation would update beliefs 
        about hidden states x, were it to be observed. 
    """

    # if A.dtype == "object":
    #     Ng = len(A)
    #     AOA_flag = True
    # else:
    #     Ng = 1
    #     AOA_flag = False

    _, _, Ng, _ = utils.get_model_dimensions(A=A)

    # Probability distribution over the hidden causes: i.e., Q(x)
    qx = spm_cross(x)
    G = 0
    qo = 0
    idx = np.array(np.where(qx > np.exp(-16))).T

    if utils.is_arr_of_arr(A):
        # Accumulate expectation of entropy: i.e., E[lnP(o|x)]
        for i in idx:
            # Probability over outcomes for this combination of causes
            po = np.ones(1)
            for g in range(Ng):
                index_vector = [slice(0, A[g].shape[0])] + list(i)
                po = spm_cross(po, A[g][tuple(index_vector)])

            po = po.ravel()
            qo += qx[tuple(i)] * po
            G += qx[tuple(i)] * po.dot(np.log(po + np.exp(-16)))
    else:
        for i in idx:
            po = np.ones(1)
            index_vector = [slice(0, A.shape[0])] + list(i)
            po = spm_cross(po, A[tuple(index_vector)])
            po = po.ravel()
            qo += qx[tuple(i)] * po
            G += qx[tuple(i)] * po.dot(np.log(po + np.exp(-16)))

    # Subtract negative entropy of expectations: i.e., E[lnQ(o)]
    # G = G - qo.dot(np.log(qo + np.exp(-16)))  # type: ignore
    G = G - qo.dot(spm_log(qo))  # type: ignore

    return G
Exemple #8
0
def update_posterior_policies_mmp(
    qs_seq_pi,
    A,
    B,
    C,
    policies,
    use_utility=True,
    use_states_info_gain=True,
    use_param_info_gain=False,
    prior=None,
    pA=None,
    pB=None,
    F=None,
    E=None,
    gamma=16.0,
    return_numpy=True,
):
    """
    `qs_seq_pi`: numpy object array that stores posterior marginals beliefs over hidden states for each policy. 
                The structure is nested as policies --> timesteps --> hidden state factors. So qs_seq_pi[p_idx][t][f] is the belief about factor `f` at time `t`, under policy `p_idx`
    `A`: numpy object array that stores likelihood mappings for each modality.
    `B`: numpy object array that stores transition matrices (possibly action-conditioned) for each hidden state factor
    `policies`: numpy object array that stores each (potentially-multifactorial) policy in `policies[p_idx]`. Shape of `policies[p_idx]` is `(num_timesteps, num_factors)`
    `use_utility`: Boolean that determines whether expected utility should be incorporated into computation of EFE (default: `True`)
    `use_states_info_gain`: Boolean that determines whether state epistemic value (info gain about hidden states) should be incorporated into computation of EFE (default: `True`)
    `use_param_info_gain`: Boolean that determines whether parameter epistemic value (info gain about generative model parameters) should be incorporated into computation of EFE (default: `False`)
    `prior`: numpy object array that stores priors over hidden states - this matters when computing the first value of the parameter info gain for the Dirichlet parameters over B
    `pA`: numpy object array that stores Dirichlet priors over likelihood mappings (one per modality)
    `pB`: numpy object array that stores Dirichlet priors over transition mappings (one per hidden state factor)
    `F` : 1D numpy array that stores variational free energy of each policy 
    `E` : 1D numpy array that stores prior probability each policy (e.g. 'habits')
    `gamma`: Float that encodes the precision over policies
    `return_numpy`: Boolean that determines whether output should be a numpy array or an instance of the Categorical class (default: `True`)
    """

    A = utils.to_numpy(A)
    B = utils.to_numpy(B)
    num_obs, num_states, num_modalities, num_factors = utils.get_model_dimensions(
        A, B)
    horizon = len(qs_seq_pi[0])
    num_policies = len(qs_seq_pi)

    # initialise`qo_seq` as object arrays to initially populate `qo_seq_pi`
    qo_seq = utils.obj_array(horizon)
    for t in range(horizon):
        qo_seq[t] = utils.obj_array_zeros(num_obs)

    # initialise expected observations
    qo_seq_pi = utils.obj_array(num_policies)
    for p_idx in range(num_policies):
        # qo_seq_pi[p_idx] = copy.deepcopy(obs_over_time)
        qo_seq_pi[p_idx] = qo_seq

    efe = np.zeros(num_policies)

    if F is None:
        F = np.zeros(num_policies)
    if E is None:
        E = np.zeros(num_policies)

    for p_idx, policy in enumerate(policies):

        qs_seq_pi_i = qs_seq_pi[p_idx]

        for t in range(horizon):

            qo_pi_t = get_expected_obs(qs_seq_pi_i[t], A)
            qo_seq_pi[p_idx][t] = qo_pi_t

            if use_utility:
                efe[p_idx] += calc_expected_utility(qo_seq_pi[p_idx][t], C)

            if use_states_info_gain:
                efe[p_idx] += calc_states_info_gain(A, qs_seq_pi_i[t])

            if use_param_info_gain:
                if pA is not None:
                    efe[p_idx] += calc_pA_info_gain(pA, qo_seq_pi[p_idx][t],
                                                    qs_seq_pi_i[t])
                if pB is not None:
                    if t > 0:
                        efe[p_idx] += calc_pB_info_gain(
                            pB, qs_seq_pi_i[t], qs_seq_pi_i[t - 1], policy)
                    else:
                        if prior is not None:
                            efe[p_idx] += calc_pB_info_gain(
                                pB, qs_seq_pi_i[t], prior, policy)

    q_pi = softmax(efe * gamma - F + E)
    if return_numpy:
        q_pi = q_pi / q_pi.sum(axis=0)
    else:
        q_pi = utils.to_categorical(q_pi)
        q_pi.normalize()
    return q_pi, efe
Exemple #9
0
def update_posterior_states_v2(
    A,
    B,
    prev_obs,
    policies,
    prev_actions=None,
    prior=None,
    return_numpy=True,
    policy_sep_prior = True,
    **kwargs,
):
    """
    Update posterior over hidden states using marginal message passing
    """
    # safe convert to numpy
    A = utils.to_numpy(A)

    num_obs, num_states, num_modalities, num_factors = utils.get_model_dimensions(A, B)
    A = utils.to_arr_of_arr(A)
    B = utils.to_arr_of_arr(B)

    prev_obs = utils.process_observation_seq(prev_obs, num_modalities, num_obs)
    if prior is not None:
        if policy_sep_prior:
            for p_idx, policy in enumerate(policies):
                prior[p_idx] = utils.process_prior(prior[p_idx], num_factors)
        else:
            prior = utils.process_prior(prior, num_factors)

    lh_seq = get_joint_likelihood_seq(A, prev_obs, num_states)

    if prev_actions is not None:
        prev_actions = np.stack(prev_actions,0)

    qs_seq_pi = utils.obj_array(len(policies))
    F = np.zeros(len(policies)) # variational free energy of policies

    if policy_sep_prior:
        for p_idx, policy in enumerate(policies):
            # get sequence and the free energy for policy
            qs_seq_pi[p_idx], F[p_idx] = run_mmp(
                lh_seq,
                B,
                policy,
                prev_actions=prev_actions,
                prior=prior[p_idx], 
                **kwargs
            )
    else:
        for p_idx, policy in enumerate(policies):
            # get sequence and the free energy for policy
            qs_seq_pi[p_idx], F[p_idx] = run_mmp(
                lh_seq,
                B,
                policy,
                prev_actions=prev_actions,
                prior=prior, 
                **kwargs
            )

    return qs_seq_pi, F
Exemple #10
0
def run_mmp_v2(A,
               B,
               ll_seq,
               policy,
               prev_actions=None,
               prior=None,
               num_iter=10,
               grad_descent=False,
               tau=0.25):
    # window
    past_len = len(ll_seq)
    future_len = policy.shape[0]
    infer_len = past_len + future_len
    future_cutoff = past_len + future_len - 2

    # dimensions
    _, num_states, _, num_factors = get_model_dimensions(A, B)
    A = to_arr_of_arr(A)
    B = to_arr_of_arr(B)

    # beliefs
    qs_seq = [np.empty(num_factors, dtype=object) for _ in range(infer_len)]
    for t in range(infer_len):
        for f in range(num_factors):
            qs_seq[t][f] = np.ones(num_states[f]) / num_states[f]

    # last message
    qs_T = np.empty(num_factors, dtype=object)
    for f in range(num_factors):
        qs_T[f] = np.zeros(num_states[f])

    # prior
    if prior is None:
        prior = np.empty(num_factors, dtype=object)
        for f in range(num_factors):
            prior[f] = np.ones(num_states[f]) / num_states[f]

    # transposed transition
    trans_B = np.empty(num_factors, dtype=object)
    for f in range(num_factors):
        trans_B[f] = np.zeros_like(B[f])
        for u in range(B[f].shape[2]):
            trans_B[f][:, :, u] = spm_norm(B[f][:, :, u].T)

    # full policy
    if prev_actions is None:
        prev_actions = np.zeros((past_len, policy.shape[1]))
    policy = np.vstack((prev_actions, policy))

    for _ in range(num_iter):
        for t in range(infer_len):
            for f in range(num_factors):
                # likelihood
                if t < past_len:
                    lnA = np.log(spm_dot(ll_seq[t], qs_seq[t], [f]) + 1e-16)
                else:
                    lnA = np.zeros(num_states[f])

                # past message
                if t == 0:
                    lnB_past = np.log(prior[f] + 1e-16)
                else:
                    past_msg = B[f][:, :, int(policy[t - 1,
                                                     f])].dot(qs_seq[t - 1][f])
                    lnB_past = np.log(past_msg + 1e-16)

                # future message
                if t >= future_cutoff:
                    lnB_future = qs_T[f]
                else:
                    future_msg = trans_B[f][:, :, int(policy[t, f])].dot(
                        qs_seq[t + 1][f])
                    lnB_future = np.log(future_msg + 1e-16)

                # inference
                if grad_descent:
                    lnqs = np.log(qs_seq[t][f] + 1e-16)
                    coeff = 1 if (t >= future_cutoff) else 2
                    err = (coeff * lnA + lnB_past + lnB_future) - coeff * lnqs
                    err -= err.mean()
                    lnqs = lnqs + tau * err
                    qs_seq[t][f] = softmax(lnqs)
                else:
                    qs_seq[t][f] = softmax(lnA + lnB_past + lnB_future)

    return qs_seq