Exemple #1
0
    def test_fpi_inference(self):
        num_obs = [2, 4]
        num_states = [2, 2]
        num_control = [2, 2]
        A = utils.random_A_matrix(num_obs, num_states)
        B = utils.random_B_matrix(num_states, num_control)

        C = utils.obj_array_zeros([num_ob for num_ob in num_obs])
        C[1][0] = 1.0
        C[1][1] = -2.0

        agent = Agent(A=A, B=B, C=C, control_fac_idx=[1])
        o, s = [0, 2], [0, 0]
        qx = agent.infer_states(o)
        agent.infer_policies()
        action = agent.sample_action()

        self.assertEqual(len(action), len(num_control))
Exemple #2
0
    def test_mmp_active_inference(self):
        """
        Tests to make sure whole active inference loop works (with various past and future
        inference/policy horizons).

        @TODO: Need to check this against a MATLAB output, where
        the sequence of all observations / actions / generative model
        parameters are used (with deterministic action sampling and
        pre-determined generative process outputs - i.e. no effects of action)
        """

        num_obs = [3, 2]
        num_states = [4, 3]
        num_control = [1, 3]
        A = utils.random_A_matrix(num_obs, num_states)
        B = utils.random_B_matrix(num_states, num_control)

        C = utils.obj_array_zeros(num_obs)
        C[1][0] = 1.0
        C[1][1] = -2.0

        agent = Agent(A=A,
                      B=B,
                      C=C,
                      control_fac_idx=[1],
                      inference_algo="MMP",
                      policy_len=2,
                      inference_horizon=3)

        T = 10

        for t in range(T):

            o = [
                np.random.randint(num_ob) for num_ob in num_obs
            ]  # just randomly generate observations at each timestep, no generative process
            qx = agent.infer_states(o)
            agent.infer_policies()
            action = agent.sample_action()

        print(agent.prev_actions)
        print(agent.prev_obs)
Exemple #3
0
    def test_mmp_inference(self):
        num_obs = [2, 4]
        num_states = [2, 2]
        num_control = [2, 2]
        A = utils.random_A_matrix(num_obs, num_states)
        B = utils.random_B_matrix(num_states, num_control)

        C = utils.obj_array_zeros(num_obs)
        C[1][0] = 1.0
        C[1][1] = -2.0

        agent = Agent(A=A,
                      B=B,
                      C=C,
                      control_fac_idx=[1],
                      inference_algo="MMP",
                      policy_len=5,
                      inference_horizon=1)
        o = [0, 2]
        qx = agent.infer_states(o)

        print(qx[0].shape)
        print(qx[1].shape)
Exemple #4
0
def run_mmp(lh_seq,
            B,
            policy,
            prev_actions=None,
            prior=None,
            num_iter=10,
            grad_descent=False,
            tau=0.25,
            last_timestep=False,
            save_vfe_seq=False):
    """
    Marginal message passing scheme for updating posterior beliefs about multi-factor hidden states over time, 
    conditioned on a particular policy.
    Parameters:
    --------------
    `lh_seq`[numpy object array]:
        Likelihoods of hidden state factors given a sequence of observations over time. This is logged beforehand
    `B`[numpy object array]:
        Transition likelihood of the generative model, mapping from hidden states at T to hidden states at T+1. One B matrix per modality (e.g. `B[f]` corresponds to f-th factor's B matrix)
        This is used in inference to compute the 'forward' and 'backward' messages conveyed between beliefs about temporally-adjacent timepoints.
    `policy` [2-D numpy.ndarray]:
        Matrix of shape (policy_len, num_control_factors) that indicates the indices of each action (control state index) upon timestep t and control_factor f in the element `policy[t,f]` for a given policy.
    `prev_actions` [None or 2-D numpy.ndarray]:
        If provided, should be a matrix of previous actions of shape (infer_len, num_control_factors) taht indicates the indices of each action (control state index) taken in the past (up until the current timestep).
    `prior`[None or numpy object array]:
        If provided, this a numpy object array with one sub-array per hidden state factor, that stores the prior beliefs about initial states (at t = 0, relative to `infer_len`).
    `num_iter`[Int]:
        Number of variational iterations
    `grad_descent` [Bool]:
        Flag for whether to use gradient descent (predictive coding style)
    `tau` [Float]:
        Decay constant for use in `grad_descent` version
    `last_timestep` [Bool]:
        Flag for whether we are at the last timestep of belief updating
    `save_vfe_seq` [Bool]:
        Flag for whether to save the sequence of variational free energies over time (for this policy). If `False`, then VFE is integrated across time/iterations.
    Returns:
    --------------
    `qs_seq`[list]: the sequence of beliefs about the different hidden state factors over time, one multi-factor posterior belief per timestep in `infer_len`
    `F`[Float or list, depending on setting of save_vfe_seq]
    """

    # window
    past_len = len(lh_seq)
    future_len = policy.shape[0]

    if last_timestep:
        infer_len = past_len + future_len - 1
    else:
        infer_len = past_len + future_len

    future_cutoff = past_len + future_len - 2

    # dimensions
    _, num_states, _, num_factors = get_model_dimensions(A=None, B=B)
    B = to_arr_of_arr(B)

    # beliefs
    qs_seq = obj_array(infer_len)
    for t in range(infer_len):
        qs_seq[t] = obj_array_uniform(num_states)

    # last message
    qs_T = obj_array_zeros(num_states)

    # prior
    if prior is None:
        prior = obj_array_uniform(num_states)

    # transposed transition
    trans_B = obj_array(num_factors)

    for f in range(num_factors):
        trans_B[f] = spm_norm(np.swapaxes(B[f], 0, 1))

    # full policy
    if prev_actions is None:
        prev_actions = np.zeros((past_len, policy.shape[1]))
    policy = np.vstack((prev_actions, policy))

    # initialise variational free energy of policy (accumulated over time)

    if save_vfe_seq:
        F = []
        F.append(0.0)
    else:
        F = 0.0

    for itr in range(num_iter):
        for t in range(infer_len):
            for f in range(num_factors):
                # likelihood
                if t < past_len:
                    lnA = spm_log(spm_dot(lh_seq[t], qs_seq[t], [f]))
                else:
                    lnA = np.zeros(num_states[f])

                # past message
                if t == 0:
                    lnB_past = spm_log(prior[f])
                else:
                    past_msg = B[f][:, :, int(policy[t - 1,
                                                     f])].dot(qs_seq[t - 1][f])
                    lnB_past = spm_log(past_msg)

                # future message
                if t >= future_cutoff:
                    lnB_future = qs_T[f]
                else:
                    future_msg = trans_B[f][:, :, int(policy[t, f])].dot(
                        qs_seq[t + 1][f])
                    lnB_future = spm_log(future_msg)

                # inference
                if grad_descent:
                    lnqs = spm_log(qs_seq[t][f])
                    coeff = 1 if (t >= future_cutoff) else 2
                    err = (coeff * lnA + lnB_past + lnB_future) - coeff * lnqs
                    err -= err.mean()
                    lnqs = lnqs + tau * err
                    qs_seq[t][f] = softmax(lnqs)
                    if (t == 0) or (t == (infer_len - 1)):
                        F += +0.5 * lnqs.dot(0.5 * err)
                    else:
                        F += lnqs.dot(
                            0.5 * (err - (num_factors - 1) * lnA / num_factors)
                        )  # @NOTE: not sure why Karl does this in SPM_MDP_VB_X, we should look into this
                else:
                    qs_seq[t][f] = softmax(lnA + lnB_past + lnB_future)

            if not grad_descent:

                if save_vfe_seq:
                    if t < past_len:
                        F.append(
                            F[-1] +
                            calc_free_energy(qs_seq[t],
                                             prior,
                                             num_factors,
                                             likelihood=spm_log(lh_seq[t]))[0])
                    else:
                        F.append(
                            F[-1] +
                            calc_free_energy(qs_seq[t], prior, num_factors)[0])
                else:
                    if t < past_len:
                        F += calc_free_energy(qs_seq[t],
                                              prior,
                                              num_factors,
                                              likelihood=spm_log(lh_seq[t]))
                    else:
                        F += calc_free_energy(qs_seq[t], prior, num_factors)

    return qs_seq, F
Exemple #5
0
from pymdp.agent import Agent
from pymdp.core import utils
from pymdp.core.maths import softmax
from pymdp.distributions import Categorical, Dirichlet
import copy

obs_names = ["state_observation", "reward", "decision_proprioceptive"]
state_names = ["reward_level", "decision_state"]
action_names = ["uncontrolled", "decision_state"]

num_obs = [3, 3, 3]
num_states = [2, 3]
num_modalities = len(num_obs)
num_factors = len(num_states)

A = utils.obj_array_zeros([[o] + num_states for _, o in enumerate(num_obs)])

A[0][:, :, 0] = np.ones((num_obs[0], num_states[0])) / num_obs[0]
A[0][:, :, 1] = np.ones((num_obs[0], num_states[0])) / num_obs[0]
A[0][:, :, 2] = np.array([[0.8, 0.2], [0.0, 0.0], [0.2, 0.8]])

A[1][2, :, 0] = np.ones(num_states[0])
A[1][0:2, :, 1] = softmax(
    np.eye(num_obs[1] - 1)
)  # bandit statistics (mapping between reward-state (first hidden state factor) and rewards (Good vs Bad))
A[1][2, :, 2] = np.ones(num_states[0])

# establish a proprioceptive mapping that determines how the agent perceives its own `decision_state`
A[2][0, :, 0] = 1.0
A[2][1, :, 1] = 1.0
A[2][2, :, 2] = 1.0
Exemple #6
0
def update_posterior_policies_mmp(
    qs_seq_pi,
    A,
    B,
    C,
    policies,
    use_utility=True,
    use_states_info_gain=True,
    use_param_info_gain=False,
    prior=None,
    pA=None,
    pB=None,
    F=None,
    E=None,
    gamma=16.0,
    return_numpy=True,
):
    """
    `qs_seq_pi`: numpy object array that stores posterior marginals beliefs over hidden states for each policy. 
                The structure is nested as policies --> timesteps --> hidden state factors. So qs_seq_pi[p_idx][t][f] is the belief about factor `f` at time `t`, under policy `p_idx`
    `A`: numpy object array that stores likelihood mappings for each modality.
    `B`: numpy object array that stores transition matrices (possibly action-conditioned) for each hidden state factor
    `policies`: numpy object array that stores each (potentially-multifactorial) policy in `policies[p_idx]`. Shape of `policies[p_idx]` is `(num_timesteps, num_factors)`
    `use_utility`: Boolean that determines whether expected utility should be incorporated into computation of EFE (default: `True`)
    `use_states_info_gain`: Boolean that determines whether state epistemic value (info gain about hidden states) should be incorporated into computation of EFE (default: `True`)
    `use_param_info_gain`: Boolean that determines whether parameter epistemic value (info gain about generative model parameters) should be incorporated into computation of EFE (default: `False`)
    `prior`: numpy object array that stores priors over hidden states - this matters when computing the first value of the parameter info gain for the Dirichlet parameters over B
    `pA`: numpy object array that stores Dirichlet priors over likelihood mappings (one per modality)
    `pB`: numpy object array that stores Dirichlet priors over transition mappings (one per hidden state factor)
    `F` : 1D numpy array that stores variational free energy of each policy 
    `E` : 1D numpy array that stores prior probability each policy (e.g. 'habits')
    `gamma`: Float that encodes the precision over policies
    `return_numpy`: Boolean that determines whether output should be a numpy array or an instance of the Categorical class (default: `True`)
    """

    A = utils.to_numpy(A)
    B = utils.to_numpy(B)
    num_obs, num_states, num_modalities, num_factors = utils.get_model_dimensions(
        A, B)
    horizon = len(qs_seq_pi[0])
    num_policies = len(qs_seq_pi)

    # initialise`qo_seq` as object arrays to initially populate `qo_seq_pi`
    qo_seq = utils.obj_array(horizon)
    for t in range(horizon):
        qo_seq[t] = utils.obj_array_zeros(num_obs)

    # initialise expected observations
    qo_seq_pi = utils.obj_array(num_policies)
    for p_idx in range(num_policies):
        # qo_seq_pi[p_idx] = copy.deepcopy(obs_over_time)
        qo_seq_pi[p_idx] = qo_seq

    efe = np.zeros(num_policies)

    if F is None:
        F = np.zeros(num_policies)
    if E is None:
        E = np.zeros(num_policies)

    for p_idx, policy in enumerate(policies):

        qs_seq_pi_i = qs_seq_pi[p_idx]

        for t in range(horizon):

            qo_pi_t = get_expected_obs(qs_seq_pi_i[t], A)
            qo_seq_pi[p_idx][t] = qo_pi_t

            if use_utility:
                efe[p_idx] += calc_expected_utility(qo_seq_pi[p_idx][t], C)

            if use_states_info_gain:
                efe[p_idx] += calc_states_info_gain(A, qs_seq_pi_i[t])

            if use_param_info_gain:
                if pA is not None:
                    efe[p_idx] += calc_pA_info_gain(pA, qo_seq_pi[p_idx][t],
                                                    qs_seq_pi_i[t])
                if pB is not None:
                    if t > 0:
                        efe[p_idx] += calc_pB_info_gain(
                            pB, qs_seq_pi_i[t], qs_seq_pi_i[t - 1], policy)
                    else:
                        if prior is not None:
                            efe[p_idx] += calc_pB_info_gain(
                                pB, qs_seq_pi_i[t], prior, policy)

    q_pi = softmax(efe * gamma - F + E)
    if return_numpy:
        q_pi = q_pi / q_pi.sum(axis=0)
    else:
        q_pi = utils.to_categorical(q_pi)
        q_pi.normalize()
    return q_pi, efe