Exemple #1
0
def test_mask_two_samples():
    from pymks import DiscreteIndicatorBasis
    from pymks.stats import correlate
    from pymks.datasets import make_microstructure

    X = make_microstructure(n_samples=2, n_phases=2, size=(3, 3), grain_size=(2, 2), seed=99)
    basis = DiscreteIndicatorBasis(n_states=2)
    X_ = basis.discretize(X)
    mask = np.ones(X.shape)
    mask[:, 0, 0] = 0.0
    X_corr = correlate(X_, confidence_index=mask)
    X_result = np.array(
        [
            [
                [[1 / 3.0, 1 / 3.0, 1 / 3.0], [1 / 5.0, 1 / 5.0, 1 / 5.0], [1 / 4.0, 1 / 4.0, 0]],
                [[1 / 5.0, 1 / 5.0, 2 / 5.0], [1 / 2.0, 1 / 2.0, 0], [1 / 5.0, 1 / 5.0, 1 / 5.0]],
                [[1 / 4.0, 1 / 4.0, 1 / 2.0], [1 / 5.0, 1 / 5.0, 2 / 5.0], [1 / 3.0, 1 / 3.0, 0]],
            ],
            [
                [[0.0, 0.0, 1 / 3.0], [2 / 5.0, 3 / 5.0, 0.0], [0.0, 0.0, 1 / 2.0]],
                [[0.0, 0.0, 2 / 5.0], [3 / 8.0, 5 / 8.0, 0], [0.0, 0.0, 3 / 5.0]],
                [[0.0, 0.0, 1 / 2.0], [2 / 5.0, 3 / 5.0, 0.0], [0.0, 0.0, 2 / 3.0]],
            ],
        ]
    )
    print np.round(X_corr, decimals=4)
    print X_result
    assert np.allclose(X_corr, X_result)
Exemple #2
0
def test_mask_two_samples():
    from pymks import DiscreteIndicatorBasis
    from pymks.stats import correlate
    from pymks.datasets import make_microstructure

    X = make_microstructure(n_samples=2,
                            n_phases=2,
                            size=(3, 3),
                            grain_size=(2, 2),
                            seed=99)
    basis = DiscreteIndicatorBasis(n_states=2)
    X_ = basis.discretize(X)
    mask = np.ones(X.shape)
    mask[:, 0, 0] = 0.
    X_corr = correlate(X_, confidence_index=mask)
    X_result = np.array([[[[1 / 3., 1 / 3., 1 / 3.], [1 / 5., 1 / 5., 1 / 5.],
                           [1 / 4., 1 / 4., 0]],
                          [[1 / 5., 1 / 5., 2 / 5.], [1 / 2., 1 / 2., 0],
                           [1 / 5., 1 / 5., 1 / 5.]],
                          [[1 / 4., 1 / 4., 1 / 2.], [1 / 5., 1 / 5., 2 / 5.],
                           [1 / 3., 1 / 3., 0]]],
                         [[[0., 0., 1 / 3.], [2 / 5., 3 / 5., 0.],
                           [0., 0., 1 / 2.]],
                          [[0., 0., 2 / 5.], [3 / 8., 5 / 8., 0],
                           [0., 0., 3 / 5.]],
                          [[0., 0., 1 / 2.], [2 / 5., 3 / 5., 0.],
                           [0., 0., 2 / 3.]]]])
    print np.round(X_corr, decimals=4)
    print X_result
    assert np.allclose(X_corr, X_result)
Exemple #3
0
def test_periodic_crosscorrelation():
    """
    test nonperiodic crosscorrelation
    """
    from pymks import DiscreteIndicatorBasis
    from pymks.stats import crosscorrelate

    X = np.array([[[1, 0, 1, 1], [1, 0, 1, 1], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]])
    basis = DiscreteIndicatorBasis(n_states=2)
    X_ = basis.discretize(X)
    X_cross = crosscorrelate(X_, periodic_axes=(0, 1))

    X_result = np.array(
        [
            [
                [0.3, 0.3, 0.3, 0.3],
                [0.2, 0.2, 0.15, 0.2],
                [0.1, 0.1, 0.0, 0.1],
                [0.2, 0.2, 0.15, 0.2],
                [0.3, 0.3, 0.3, 0.3],
            ]
        ]
    )

    assert np.allclose(X_result, X_cross[..., 0])
Exemple #4
0
def test_nonperiodic_autocorrelation():
    """
    test nonperiodic autocorrelation for spatial statistics
    """
    from pymks import DiscreteIndicatorBasis
    from pymks.stats import autocorrelate

    X = np.array([[[1, 0, 1, 1], [1, 0, 1, 1], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]])
    basis = DiscreteIndicatorBasis(n_states=2)
    X_ = basis.discretize(X)
    X_auto = autocorrelate(X_)

    X_result = np.array(
        [
            [
                [0, 0, 0, 0],
                [1.0 / 8, 1.0 / 12, 3.0 / 16, 1.0 / 12],
                [0.2, 2.0 / 15, 0.3, 2.0 / 15],
                [1.0 / 8, 1.0 / 12, 3.0 / 16, 1.0 / 12],
                [0, 0, 0, 0],
            ]
        ]
    )

    assert np.allclose(X_result, X_auto[..., 1])
Exemple #5
0
def test_mixperdic_mask():
    from pymks import DiscreteIndicatorBasis
    from pymks.stats import autocorrelate
    from pymks.datasets import make_checkerboard_microstructure

    X = make_checkerboard_microstructure(1, 3)
    basis = DiscreteIndicatorBasis(n_states=2)
    X_ = basis.discretize(X)
    mask = np.ones((X.shape))
    mask[0, 0, 0] = 0
    X_auto_mixperiodic_mask = autocorrelate(X_, periodic_axes=[0], confidence_index=mask)
    X_result_0 = np.array([[[1 / 5.0, 1 / 7.0, 2 / 5.0], [0, 0.5, 0], [2 / 5.0, 1 / 7.0, 1 / 5.0]]])
    X_result_1 = np.array([[[2 / 5.0, 1 / 7.0, 2 / 5.0], [0, 0.5, 0.0], [2 / 5.0, 1 / 7.0, 2 / 5.0]]])
    X_result = np.concatenate((X_result_0[..., None], X_result_1[..., None]), axis=-1)
    assert np.allclose(X_auto_mixperiodic_mask, np.concatenate(X_result))
def test_n_components_change():
    from pymks import MKSStructureAnalysis
    from pymks import DiscreteIndicatorBasis
    dbasis = DiscreteIndicatorBasis(n_states=2)
    model = MKSStructureAnalysis(basis=dbasis)
    model.n_components = 27
    assert model.n_components == 27
Exemple #7
0
def test_n_componets_from_reducer():
    from pymks import MKSHomogenizationModel, DiscreteIndicatorBasis
    from sklearn.manifold import LocallyLinearEmbedding
    reducer = LocallyLinearEmbedding(n_components=7)
    dbasis = DiscreteIndicatorBasis(n_states=3, domain=[0, 2])
    model = MKSHomogenizationModel(dimension_reducer=reducer, basis=dbasis)
    assert model.n_components == 7
Exemple #8
0
def test_stress():
    from pymks.datasets import make_elastic_stress_random
    from pymks import MKSHomogenizationModel, DiscreteIndicatorBasis
    sample_size = 200
    grain_size = [(5, 5), (6, 4), (4, 6), (2, 2)]
    n_samples = [sample_size] * len(grain_size)
    elastic_modulus = (410, 200)
    poissons_ratio = (0.28, 0.3)
    macro_strain = 0.001
    size = (21, 21)
    X, y = make_elastic_stress_random(n_samples=n_samples,
                                      size=size,
                                      grain_size=grain_size,
                                      elastic_modulus=elastic_modulus,
                                      poissons_ratio=poissons_ratio,
                                      macro_strain=macro_strain,
                                      seed=0)
    dbasis = DiscreteIndicatorBasis(n_states=2, domain=[0, 1])
    model = MKSHomogenizationModel(basis=dbasis, n_components=3, degree=3)
    model.fit(X, y)
    test_sample_size = 1
    n_samples = [test_sample_size] * len(grain_size)
    X_new, y_new = make_elastic_stress_random(n_samples=n_samples,
                                              size=size,
                                              grain_size=grain_size,
                                              elastic_modulus=elastic_modulus,
                                              poissons_ratio=poissons_ratio,
                                              macro_strain=macro_strain,
                                              seed=3)
    y_result = model.predict(X_new)
    assert np.allclose(np.round(y_new, decimals=2),
                       np.round(y_result, decimals=2))
Exemple #9
0
def test_periodic_crosscorrelation():
    '''
    test nonperiodic crosscorrelation
    '''
    from pymks import DiscreteIndicatorBasis
    from pymks.stats import crosscorrelate
    X = np.array([[[1, 0, 1, 1], [1, 0, 1, 1], [0, 0, 0, 0], [0, 0, 0, 0],
                   [0, 0, 0, 0]]])
    basis = DiscreteIndicatorBasis(n_states=2)
    X_ = basis.discretize(X)
    X_cross = crosscorrelate(X_, periodic_axes=(0, 1))

    X_result = np.array([[[0.3, 0.3, 0.3, 0.3], [0.2, 0.2, 0.15, 0.2],
                          [0.1, 0.1, 0., 0.1], [0.2, 0.2, 0.15, 0.2],
                          [0.3, 0.3, 0.3, 0.3]]])

    assert (np.allclose(X_result, X_cross[..., 0]))
Exemple #10
0
def test_periodic_autocorrelation():
    """
    test periodic autocorrelation for spatial statistics
    """
    from pymks import DiscreteIndicatorBasis
    from pymks.stats import autocorrelate

    X = np.array([[[1, 0, 1, 1], [1, 0, 1, 1], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]])
    basis = DiscreteIndicatorBasis(n_states=2)
    X_ = basis.discretize(X)
    X_auto = autocorrelate(X_, periodic_axes=(0, 1))

    X_result = np.array(
        [[[0, 0, 0, 0], [0.1, 0.1, 0.15, 0.1], [0.2, 0.2, 0.3, 0.2], [0.1, 0.1, 0.15, 0.1], [0, 0, 0, 0]]]
    )

    assert np.allclose(X_result, X_auto[..., 1])
Exemple #11
0
def test_periodic_autocorrelation():
    '''
    test periodic autocorrelation for spatial statistics
    '''
    from pymks import DiscreteIndicatorBasis
    from pymks.stats import autocorrelate
    X = np.array([[[1, 0, 1, 1], [1, 0, 1, 1], [0, 0, 0, 0], [0, 0, 0, 0],
                   [0, 0, 0, 0]]])
    basis = DiscreteIndicatorBasis(n_states=2)
    X_ = basis.discretize(X)
    X_auto = autocorrelate(X_, periodic_axes=(0, 1))

    X_result = np.array([[[0, 0, 0, 0], [0.1, 0.1, 0.15, 0.1],
                          [0.2, 0.2, 0.3, 0.2], [0.1, 0.1, 0.15, 0.1],
                          [0, 0, 0, 0]]])

    assert (np.allclose(X_result, X_auto[..., 1]))
Exemple #12
0
def test_nonperiodic_autocorrelation():
    '''
    test nonperiodic autocorrelation for spatial statistics
    '''
    from pymks import DiscreteIndicatorBasis
    from pymks.stats import autocorrelate
    X = np.array([[[1, 0, 1, 1], [1, 0, 1, 1], [0, 0, 0, 0], [0, 0, 0, 0],
                   [0, 0, 0, 0]]])
    basis = DiscreteIndicatorBasis(n_states=2)
    X_ = basis.discretize(X)
    X_auto = autocorrelate(X_)

    X_result = np.array([[[0, 0, 0, 0], [1. / 8, 1. / 12, 3. / 16, 1. / 12],
                          [0.2, 2. / 15, 0.3, 2. / 15],
                          [1. / 8, 1. / 12, 3. / 16, 1. / 12], [0, 0, 0, 0]]])

    assert (np.allclose(X_result, X_auto[..., 1]))
Exemple #13
0
def test_periodic_correlate():
    '''
    test corrleate for non-periodic microstructures
    '''
    from pymks import DiscreteIndicatorBasis
    from pymks.stats import correlate

    X = np.array([[[0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 0, 0],
                   [0, 0, 1, 0]],
                  [[0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0],
                   [0, 1, 0, 0]]])
    basis = DiscreteIndicatorBasis(n_states=2)
    X_ = basis.discretize(X)
    X_corr = correlate(X_, periodic_axes=(0, 1))
    X_result = [[0.6, 0.6, 0.75, 0.6], [0.6, 0.6, 0.75, 0.6],
                [0.6, 0.6, 0.8, 0.6], [0.6, 0.6, 0.75, 0.6],
                [0.6, 0.6, 0.75, 0.6]]
    assert (np.allclose(X_result, X_corr[0, ..., 0]))
Exemple #14
0
def test_nonperiodic_correlate():
    '''
    test corrleate for non-periodic microstructures
    '''
    from pymks import DiscreteIndicatorBasis
    from pymks.stats import correlate

    X = np.array([[[0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 0, 0],
                   [0, 0, 1, 0]],
                  [[0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0],
                   [0, 1, 0, 0]]])
    basis = DiscreteIndicatorBasis(n_states=2)
    X_ = basis.discretize(X)
    X_corr = correlate(X_)
    X_result = [[2 / 3., 4 / 9., 0.75, 4 / 9.], [5 / 8., 0.5, 0.75, 0.5],
                [0.6, 7 / 15., 0.8, 7 / 15.], [5 / 8., 0.5, 0.75, 0.5],
                [0.5, 4 / 9., 0.75, 4 / 9.]]
    assert (np.allclose(X_result, X_corr[0, ..., 0]))
Exemple #15
0
def test_n_components_with_reducer():
    from pymks import MKSHomogenizationModel, DiscreteIndicatorBasis
    from sklearn.manifold import Isomap
    reducer = Isomap(n_components=7)
    dbasis = DiscreteIndicatorBasis(n_states=3, domain=[0, 2])
    model = MKSHomogenizationModel(dimension_reducer=reducer,
                                   basis=dbasis,
                                   n_components=9)
    assert model.n_components == 9
Exemple #16
0
def test_nonperiodic_mask():
    '''
    test uncertainty masks for nonperiodic axes.
    '''
    from pymks import DiscreteIndicatorBasis
    from pymks.stats import autocorrelate
    from pymks.datasets import make_checkerboard_microstructure

    X = make_checkerboard_microstructure(1, 3)
    basis = DiscreteIndicatorBasis(n_states=2)
    X_ = basis.discretize(X)
    mask = np.ones((X.shape))
    mask[0, 0, 0] = 0
    X_auto_nonperiodic_mask = autocorrelate(X_, confidence_index=mask)
    X_result_0 = np.array([[[1 / 3., 0, 0.5], [0, 0.5, 0.], [0.5, 0, 1 / 3.]]])
    X_result_1 = np.array([[[2 / 3., 0, 0.5], [0, 0.5, 0.], [0.5, 0, 2 / 3.]]])
    X_result = np.concatenate((X_result_0[..., None], X_result_1[..., None]),
                              axis=-1)
    assert np.allclose(X_auto_nonperiodic_mask, np.concatenate(X_result))
Exemple #17
0
def test_nonperiodic_crosscorrelation():
    '''
    test nonperiodic crosscorrelation
    '''
    from pymks import DiscreteIndicatorBasis
    from pymks.stats import crosscorrelate
    X = np.array([[[1, 0, 1, 1], [1, 0, 1, 1], [0, 0, 0, 0], [0, 0, 0, 0],
                   [0, 0, 0, 0]]])
    basis = DiscreteIndicatorBasis(n_states=2)
    X_ = basis.discretize(X)
    X_cross = crosscorrelate(X_)

    X_result = np.array([[[
        1 / 3.,
        4 / 9.,
        0.5,
        4 / 9.,
    ], [1 / 8., 0.25, 3 / 16., 0.25], [0., 2 / 15., 0., 2 / 15.],
                          [0., 1 / 12., 0, 1 / 12.], [0, 0, 0, 0]]])
    assert (np.allclose(X_result, X_cross[..., 0]))
Exemple #18
0
def test_periodic_correlate():
    """
    test corrleate for non-periodic microstructures
    """
    from pymks import DiscreteIndicatorBasis
    from pymks.stats import correlate

    X = np.array(
        [
            [[0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 0, 0], [0, 0, 1, 0]],
            [[0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 1, 0, 0]],
        ]
    )
    basis = DiscreteIndicatorBasis(n_states=2)
    X_ = basis.discretize(X)
    X_corr = correlate(X_, periodic_axes=(0, 1))
    X_result = [
        [0.6, 0.6, 0.75, 0.6],
        [0.6, 0.6, 0.75, 0.6],
        [0.6, 0.6, 0.8, 0.6],
        [0.6, 0.6, 0.75, 0.6],
        [0.6, 0.6, 0.75, 0.6],
    ]
    assert np.allclose(X_result, X_corr[0, ..., 0])
Exemple #19
0
def test_nonperiodic_crosscorrelation():
    """
    test nonperiodic crosscorrelation
    """
    from pymks import DiscreteIndicatorBasis
    from pymks.stats import crosscorrelate

    X = np.array([[[1, 0, 1, 1], [1, 0, 1, 1], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]])
    basis = DiscreteIndicatorBasis(n_states=2)
    X_ = basis.discretize(X)
    X_cross = crosscorrelate(X_)

    X_result = np.array(
        [
            [
                [1 / 3.0, 4 / 9.0, 0.5, 4 / 9.0],
                [1 / 8.0, 0.25, 3 / 16.0, 0.25],
                [0.0, 2 / 15.0, 0.0, 2 / 15.0],
                [0.0, 1 / 12.0, 0, 1 / 12.0],
                [0, 0, 0, 0],
            ]
        ]
    )
    assert np.allclose(X_result, X_cross[..., 0])
Exemple #20
0
def test_mixperdic_mask():
    from pymks import DiscreteIndicatorBasis
    from pymks.stats import autocorrelate
    from pymks.datasets import make_checkerboard_microstructure

    X = make_checkerboard_microstructure(1, 3)
    basis = DiscreteIndicatorBasis(n_states=2)
    mask = np.ones((X.shape))
    mask[0, 0, 0] = 0
    X_auto_mixperiodic_mask = autocorrelate(X,
                                            basis,
                                            periodic_axes=[0],
                                            confidence_index=mask)
    X_result_0 = np.array([[[1 / 5., 1 / 7., 2 / 5.], [0, 0.5, 0],
                            [2 / 5., 1 / 7., 1 / 5.]]])
    X_result_1 = np.array([[[2 / 5., 1 / 7., 2 / 5.], [0, 0.5, 0.],
                            [2 / 5., 1 / 7., 2 / 5.]]])
    X_result = np.concatenate((X_result_0[..., None], X_result_1[..., None]),
                              axis=-1)
    assert np.allclose(X_auto_mixperiodic_mask, np.concatenate(X_result))
Exemple #21
0
def make_elastic_stress_random(n_samples=[10, 10], elastic_modulus=(100, 150),
                               poissons_ratio=(0.3, 0.3), size=(21, 21),
                               macro_strain=0.01, grain_size=[(3, 3), (9, 9)],
                               seed=10):
    """
    Generates microstructures and their macroscopic stress values for an
    applied macroscopic strain.

    Args:
        n_samples (int, optional): number of samples
        elastic_modulus (tuple, optional): list of elastic moduli for the
            different phases.
        poissons_ratio (tuple, optional): list of poisson's ratio values for
            the phases.
        size (tuple, optional): size of the microstructures
        macro_strain (tuple, optional): macroscopic strain applied to the
            sample.
        grain_size (tuple, optional): effective dimensions of grains
        seed (int, optional): seed for random number generator

    Returns:
        array of microstructures with dimensions (n_samples, n_x, ...) and
        effective stress values

    Example

    >>> X, y = make_elastic_stress_random(n_samples=1, elastic_modulus=(1, 1),
    ...                                   poissons_ratio=(1, 1),
    ...                                   grain_size=(3, 3), macro_strain=1.0)
    >>> assert np.allclose(y, np.ones(y.shape))
    >>> X, y = make_elastic_stress_random(n_samples=1, grain_size=(1, 1),
    ...                                   elastic_modulus=(100, 200),
    ...                                   size=(2, 2), poissons_ratio=(1, 3),
    ...                                   macro_strain=1., seed=3)
    >>> X_result = np.array([[[1, 1],
    ...                       [0, 1]]])
    >>> assert np.allclose(X, X_result)
    >>> assert float(np.round(y, decimals=5)[0]) == 228.74696
    >>> X, y = make_elastic_stress_random(n_samples=1, grain_size=(1, 1, 1),
    ...                                   elastic_modulus=(100, 200),
    ...                                   poissons_ratio=(1, 3),  seed=3,
    ...                                   macro_strain=1., size=(2, 2, 2))
    >>> X_result = np.array([[[1, 1],
    ...                       [0, 0]],
    ...                      [[1, 1],
    ...                       [0, 0]]])
    >>> assert np.allclose(X, X_result)
    >>> assert np.round(y[0]).astype(int) == 150

    """
    if not isinstance(grain_size[0], (list, tuple, np.ndarray)):
        grain_size = (grain_size,)
    if not isinstance(n_samples, (list, tuple, np.ndarray)):
        n_samples = (n_samples,)
    if not isinstance(size, (list, tuple, np.ndarray)) or len(size) > 3:
        raise RuntimeError('size must have length of 2 or 3')
    [RuntimeError('dimensions of size and grain_size are not the same.')
     for grains in grain_size if len(size) != len(grains)]
    if len(elastic_modulus) != len(poissons_ratio):
        raise RuntimeError('length of elastic_modulus and poissons_ratio are \
                           not the same.')
    X_cal, y_cal = make_elastic_FE_strain_delta(elastic_modulus,
                                                poissons_ratio, size,
                                                macro_strain)
    n_states = len(elastic_modulus)
    basis = DiscreteIndicatorBasis(n_states)
    model = MKSRegressionModel(basis=basis)
    model.fit(X_cal, y_cal)
    X = np.concatenate([make_microstructure(n_samples=sample, size=size,
                                            n_phases=n_states,
                                            grain_size=gs, seed=seed) for gs,
                        sample in zip(grain_size, n_samples)])
    X_ = basis.discretize(X)
    index = tuple([None for i in range(len(size) + 1)]) + (slice(None),)
    modulus = np.sum(X_ * np.array(elastic_modulus)[index], axis=-1)
    y_stress = model.predict(X) * modulus
    return X, np.average(y_stress.reshape(np.sum(n_samples), y_stress[0].size),
                         axis=1)
Exemple #22
0
def test_default_n_components():
    from pymks import MKSHomogenizationModel, DiscreteIndicatorBasis
    dbasis = DiscreteIndicatorBasis(n_states=2)
    model = MKSHomogenizationModel(basis=dbasis)
    assert model.n_components == 5
Exemple #23
0
def test_degree_change():
    from pymks import MKSHomogenizationModel, DiscreteIndicatorBasis
    dbasis = DiscreteIndicatorBasis(n_states=2)
    model = MKSHomogenizationModel(basis=dbasis)
    model.degree = 4
    assert model.degree == 4
Exemple #24
0
def make_elastic_stress_random(n_samples=[10, 10], elastic_modulus=(100, 150),
                               poissons_ratio=(0.3, 0.3), size=(21, 21),
                               macro_strain=0.01, grain_size=[(3, 3), (9, 9)],
                               seed=10, volume_fraction=None,
                               percent_variance=None):
    """
    Generates microstructures and their macroscopic stress values for an
    applied macroscopic strain.

    Args:
        n_samples (int, optional): number of samples
        elastic_modulus (tuple, optional): list of elastic moduli for the
            different phases.
        poissons_ratio (tuple, optional): list of poisson's ratio values for
            the phases.
        size (tuple, optional): size of the microstructures
        macro_strain (tuple, optional): macroscopic strain applied to the
            sample.
        grain_size (tuple, optional): effective dimensions of grains
        seed (int, optional): seed for random number generator
        volume_fraction(tuple, optional): specify the volume fraction of
            each phase
        percent_variance(int, optional): Only used if volume_fraction is
            specified. Randomly varies the volume fraction of the
            microstructure.


    Returns:
        array of microstructures with dimensions (n_samples, n_x, ...) and
        effective stress values

    Example

    >>> X, y = make_elastic_stress_random(n_samples=1, elastic_modulus=(1, 1),
    ...                                   poissons_ratio=(1, 1),
    ...                                   grain_size=(3, 3), macro_strain=1.0)
    >>> assert np.allclose(y, np.ones(y.shape))
    >>> X, y = make_elastic_stress_random(n_samples=1, grain_size=(1, 1),
    ...                                   elastic_modulus=(100, 200),
    ...                                   size=(2, 2), poissons_ratio=(1, 3),
    ...                                   macro_strain=1., seed=3)
    >>> X_result = np.array([[[1, 1],
    ...                       [0, 1]]])
    >>> assert np.allclose(X, X_result)
    >>> assert float(np.round(y, decimals=5)[0]) == 228.74696
    >>> X, y = make_elastic_stress_random(n_samples=1, grain_size=(1, 1, 1),
    ...                                   elastic_modulus=(100, 200),
    ...                                   poissons_ratio=(1, 3),  seed=3,
    ...                                   macro_strain=1., size=(2, 2, 2))
    >>> X_result = np.array([[[1, 1],
    ...                       [0, 0]],
    ...                      [[1, 1],
    ...                       [0, 0]]])
    >>> assert np.allclose(X, X_result)
    >>> assert np.round(y[0]).astype(int) == 150

    """
    if not isinstance(grain_size[0], (list, tuple, np.ndarray)):
        grain_size = (grain_size,)
    if not isinstance(n_samples, (list, tuple, np.ndarray)):
        n_samples = (n_samples,)
    if volume_fraction is None:
        volume_fraction = (None,) * len(n_samples)
    vf_0 = volume_fraction[0]
    if not isinstance(vf_0, (list, tuple, np.ndarray)) and vf_0 is not None:
        volume_fraction = (volume_fraction,)
    if not isinstance(size, (list, tuple, np.ndarray)) or len(size) > 3:
        raise RuntimeError('size must have length of 2 or 3')
    [RuntimeError('dimensions of size and grain_size are not the same.')
     for grains in grain_size if len(size) != len(grains)]
    if vf_0 is not None:
        [RuntimeError('dimensions of size and grain_size are not the same.')
         for volume_frac in volume_fraction
         if len(elastic_modulus) != len(volume_frac)]
    if len(elastic_modulus) != len(poissons_ratio):
        raise RuntimeError('length of elastic_modulus and poissons_ratio are \
                           not the same.')
    X_cal, y_cal = make_elastic_FE_strain_delta(elastic_modulus,
                                                poissons_ratio, size,
                                                macro_strain)
    n_states = len(elastic_modulus)
    basis = DiscreteIndicatorBasis(n_states)
    model = MKSRegressionModel(basis=basis)
    model.fit(X_cal, y_cal)
    X = np.concatenate([make_microstructure(n_samples=sample, size=size,
                                            n_phases=n_states,
                                            grain_size=gs, seed=seed,
                                            volume_fraction=vf,
                                            percent_variance=percent_variance)
                        for vf, gs, sample in zip(volume_fraction,
                                                  grain_size, n_samples)])
    X_ = basis.discretize(X)
    index = tuple([None for i in range(len(size) + 1)]) + (slice(None),)
    modulus = np.sum(X_ * np.array(elastic_modulus)[index], axis=-1)
    y_stress = model.predict(X) * modulus
    return X, np.average(y_stress.reshape(len(y_stress), -1), axis=1)
Exemple #25
0
def make_elastic_stress_random(n_samples=[10, 10],
                               elastic_modulus=(100, 150),
                               poissons_ratio=(0.3, 0.3),
                               size=(21, 21),
                               macro_strain=0.01,
                               grain_size=[(3, 3), (9, 9)],
                               seed=10,
                               volume_fraction=None,
                               percent_variance=None):
    """
    Generates microstructures and their macroscopic stress values for an
    applied macroscopic strain.

    Args:
        n_samples (int, optional): number of samples
        elastic_modulus (tuple, optional): list of elastic moduli for the
            different phases.
        poissons_ratio (tuple, optional): list of poisson's ratio values for
            the phases.
        size (tuple, optional): size of the microstructures
        macro_strain (tuple, optional): macroscopic strain applied to the
            sample.
        grain_size (tuple, optional): effective dimensions of grains
        seed (int, optional): seed for random number generator
        volume_fraction(tuple, optional): specify the volume fraction of
            each phase
        percent_variance(int, optional): Only used if volume_fraction is
            specified. Randomly varies the volume fraction of the
            microstructure.


    Returns:
        array of microstructures with dimensions (n_samples, n_x, ...) and
        effective stress values

    """
    if not isinstance(grain_size[0], (list, tuple, np.ndarray)):
        grain_size = (grain_size, )
    if not isinstance(n_samples, (list, tuple, np.ndarray)):
        n_samples = (n_samples, )
    if volume_fraction is None:
        volume_fraction = (None, ) * len(n_samples)
    vf_0 = volume_fraction[0]
    if not isinstance(vf_0, (list, tuple, np.ndarray)) and vf_0 is not None:
        volume_fraction = (volume_fraction, )
        np.random.seed(seed)
    if not isinstance(size, (list, tuple, np.ndarray)) or len(size) > 3:
        raise RuntimeError('size must have length of 2 or 3')
    [
        RuntimeError('dimensions of size and grain_size are not the same.')
        for grains in grain_size if len(size) != len(grains)
    ]
    if vf_0 is not None:
        [
            RuntimeError('dimensions of size and grain_size are not the same.')
            for volume_frac in volume_fraction
            if len(elastic_modulus) != len(volume_frac)
        ]
    if len(elastic_modulus) != len(poissons_ratio):
        raise RuntimeError('length of elastic_modulus and poissons_ratio are' \
                           'not the same.')
    np.random.seed(seed)
    seed = np.random.randint(100, size=(len(volume_fraction), ))
    X_cal, y_cal = make_elastic_FE_strain_delta(elastic_modulus,
                                                poissons_ratio, size,
                                                macro_strain)
    n_states = len(elastic_modulus)
    basis = DiscreteIndicatorBasis(n_states)
    model = MKSRegressionModel(basis=basis)
    model.fit(X_cal, y_cal)
    X = np.concatenate([
        make_microstructure(n_samples=sample,
                            size=size,
                            n_phases=n_states,
                            grain_size=gs,
                            seed=s,
                            volume_fraction=vf,
                            percent_variance=percent_variance) for vf, s, gs,
        sample in zip(volume_fraction, seed, grain_size, n_samples)
    ])
    X_ = basis.discretize(X)
    index = tuple([None for i in range(len(size) + 1)]) + (slice(None), )
    modulus = np.sum(X_ * np.array(elastic_modulus)[index], axis=-1)
    y_stress = model.predict(X) * modulus
    return X, np.average(y_stress.reshape(len(y_stress), -1), axis=1)