Exemple #1
0
 def test_KMeans_random_init(self):
     datapoints, labels = gaussian(n=100, d=2, labels=3, sigma=0.1, seed=1970)
     X_train, y_train, X_test, y_test = train_test_split(datapoints, labels,
                                                         train_split=0.95, seed=1970)
     classifier = KMeans(k=3, seed=1970, initialisation='Random')
     classifier.train(X=X_train)
     self.assertEqual(self.classifier.iterations, 7)
 def setUpClass(cls):
     cls.datapoints, cls.labels = gaussian(n=100,
                                           d=2,
                                           labels=3,
                                           sigma=0.1,
                                           seed=1970)
     cls.X_train, cls.y_train, cls.X_test, cls.y_test = train_test_split(
         cls.datapoints, cls.labels, train_split=0.95, seed=1970)
     cls.classifier = KNNClassifier(n=5)
     cls.classifier.train(X=cls.X_train, y=cls.y_train)
Exemple #3
0
    def setUpClass(cls):

        set_seed(2017)

        cls.A = [[random.random() for e in range(3)] for x in range(3)]
        cls.B = [[random.random() for e in range(3)] for x in range(3)]

        cls.X, cls.y = regression(100, seed=1970)
        cls.X_train, cls.y_train, cls.X_test, cls.y_test = train_test_split(
            cls.X, cls.y, train_split=0.8, seed=1970)
        cls.regressor = KNNRegressor(n=5)
        cls.regressor.train(X=cls.X_train, y=cls.y_train)
 def setUpClass(cls):
     cls.X, cls.y = regression(100, seed=1970)
     cls.X_train, cls.y_train, cls.X_test, cls.y_test = train_test_split(
         cls.X, cls.y, train_split=0.8, seed=1970)
     cls.regressor = KNNRegressor(n=5)
     cls.regressor.train(X=cls.X_train, y=cls.y_train)