Exemple #1
0
def parse_arguments(args):
    args = docopt(__doc__, args)
    args['XBLOCKS'] = int(args['XBLOCKS'])
    args['YBLOCKS'] = int(args['YBLOCKS'])
    args['SNAPSHOTS'] = int(args['SNAPSHOTS'])
    args['RBSIZE'] = int(args['RBSIZE'])

    args['--adaptive-greedy-rho'] = float(args['--adaptive-greedy-rho'])
    args['--adaptive-greedy-gamma'] = float(args['--adaptive-greedy-gamma'])
    args['--adaptive-greedy-theta'] = float(args['--adaptive-greedy-theta'])
    args['--alg'] = args['--alg'].lower()
    args['--cache-region'] = args['--cache-region'].lower()
    args['--extension-alg'] = args['--extension-alg'].lower()
    args['--grid'] = int(args['--grid'])
    args['--ipython-engines'] = int(args['--ipython-engines'])
    args['--order'] = int(args['--order'])
    args['--product'] = args['--product'].lower()
    args['--reductor'] = args['--reductor'].lower()
    args['--test'] = int(args['--test'])

    assert args['--alg'] in {'naive', 'greedy', 'adaptive_greedy', 'pod'}
    assert args['--cache-region'] in {'none', 'memory', 'disk', 'persistent'}
    assert args['--extension-alg'] in {'trivial', 'gram_schmidt', 'h1_gram_schmidt'}
    assert args['--product'] in {'euclidean', 'h1'}
    assert args['--reductor'] in {'traditional', 'residual_basis'}

    if args['--fenics']:
        if args['--cache-region'] != 'none':
            raise ValueError('Caching of high-dimensional solutions is not supported for FEniCS model.')
    else:
        if args['--order'] != 1:
            raise ValueError('Higher-order finite elements only supported for FEniCS model.')

    return args
Exemple #2
0
        self.rom, self.reductor = greedy_data['rom'], reductor
        self.first = False

    def solve(self, mu):
        if self.first:
            self._first()
        return self.reductor.reconstruct(self.rom.solve(mu))


# noinspection PyShadowingNames
class DetailedSim(SimBase):
    def __init__(self, args):
        super().__init__(args)
        self.m.disable_caching()

    def solve(self, mu):
        return self.m.solve(mu)


if __name__ == '__main__':
    args = docopt(__doc__)
    testing = args['--testing']
    if not testing:
        app = QtWidgets.QApplication(sys.argv)
        win = RBGui(args)
        win.show()
        sys.exit(app.exec_())

    from pymor.gui import qt
    qt._launch_qt_app(lambda: RBGui(args), block=False)
Exemple #3
0
        self.first = False

    def solve(self, mu):
        if self.first:
            self._first()
        return self.reductor.reconstruct(self.rom.solve(mu))


# noinspection PyShadowingNames
class DetailedSim(SimBase):

    def __init__(self, args):
        super().__init__(args)
        self.m.disable_caching()

    def solve(self, mu):
        return self.m.solve(mu)


if __name__ == '__main__':
    args = docopt(__doc__)
    testing = args['--testing']
    if not testing:
        app = QtWidgets.QApplication(sys.argv)
        win = RBGui(args)
        win.show()
        sys.exit(app.exec_())

    from pymor.gui import qt
    qt._launch_qt_app(lambda : RBGui(args), block=False)
Exemple #4
0
def main(args):
    args = docopt(__doc__, args)
    args['--cache-region'] = args['--cache-region'].lower()
    args['--ei-alg'] = args['--ei-alg'].lower()
    assert args['--ei-alg'] in ('ei_greedy', 'deim')
    args['--grid'] = int(args['--grid'])
    args['--grid-type'] = args['--grid-type'].lower()
    assert args['--grid-type'] in ('rect', 'tria')
    args['--initial-data'] = args['--initial-data'].lower()
    assert args['--initial-data'] in ('sin', 'bump')
    args['--lxf-lambda'] = float(args['--lxf-lambda'])
    args['--nt'] = int(args['--nt'])
    args['--not-periodic'] = bool(args['--not-periodic'])
    args['--num-flux'] = args['--num-flux'].lower()
    assert args['--num-flux'] in ('lax_friedrichs', 'engquist_osher')
    args['--plot-error-landscape-N'] = int(args['--plot-error-landscape-N'])
    args['--plot-error-landscape-M'] = int(args['--plot-error-landscape-M'])
    args['--test'] = int(args['--test'])
    args['--vx'] = float(args['--vx'])
    args['--vy'] = float(args['--vy'])
    args['--ipython-engines'] = int(args['--ipython-engines'])
    args['EXP_MIN'] = int(args['EXP_MIN'])
    args['EXP_MAX'] = int(args['EXP_MAX'])
    args['EI_SNAPSHOTS'] = int(args['EI_SNAPSHOTS'])
    args['EISIZE'] = int(args['EISIZE'])
    args['SNAPSHOTS'] = int(args['SNAPSHOTS'])
    args['RBSIZE'] = int(args['RBSIZE'])

    print('Setup Problem ...')
    problem = burgers_problem_2d(vx=args['--vx'],
                                 vy=args['--vy'],
                                 initial_data_type=args['--initial-data'],
                                 parameter_range=(args['EXP_MIN'],
                                                  args['EXP_MAX']),
                                 torus=not args['--not-periodic'])

    print('Discretize ...')
    if args['--grid-type'] == 'rect':
        args['--grid'] *= 1. / math.sqrt(2)
    fom, _ = discretize_instationary_fv(
        problem,
        diameter=1. / args['--grid'],
        grid_type=RectGrid if args['--grid-type'] == 'rect' else TriaGrid,
        num_flux=args['--num-flux'],
        lxf_lambda=args['--lxf-lambda'],
        nt=args['--nt'])

    if args['--cache-region'] != 'none':
        fom.enable_caching(args['--cache-region'])

    print(fom.operator.grid)

    print(f'The parameter type is {fom.parameter_type}')

    if args['--plot-solutions']:
        print('Showing some solutions')
        Us = ()
        legend = ()
        for mu in fom.parameter_space.sample_uniformly(4):
            print(f"Solving for exponent = {mu['exponent']} ... ")
            sys.stdout.flush()
            Us = Us + (fom.solve(mu), )
            legend = legend + (f"exponent: {mu['exponent']}", )
        fom.visualize(Us,
                      legend=legend,
                      title='Detailed Solutions',
                      block=True)

    pool = new_parallel_pool(ipython_num_engines=args['--ipython-engines'],
                             ipython_profile=args['--ipython-profile'])
    eim, ei_data = interpolate_operators(
        fom,
        ['operator'],
        fom.parameter_space.sample_uniformly(args['EI_SNAPSHOTS']),  # NOQA
        error_norm=fom.l2_norm,
        product=fom.l2_product,
        max_interpolation_dofs=args['EISIZE'],
        alg=args['--ei-alg'],
        pool=pool)

    if args['--plot-ei-err']:
        print('Showing some EI errors')
        ERRs = ()
        legend = ()
        for mu in fom.parameter_space.sample_randomly(2):
            print(f"Solving for exponent = \n{mu['exponent']} ... ")
            sys.stdout.flush()
            U = fom.solve(mu)
            U_EI = eim.solve(mu)
            ERR = U - U_EI
            ERRs = ERRs + (ERR, )
            legend = legend + (f"exponent: {mu['exponent']}", )
            print(f'Error: {np.max(fom.l2_norm(ERR))}')
        fom.visualize(ERRs,
                      legend=legend,
                      title='EI Errors',
                      separate_colorbars=True)

        print('Showing interpolation DOFs ...')
        U = np.zeros(U.dim)
        dofs = eim.operator.interpolation_dofs
        U[dofs] = np.arange(1, len(dofs) + 1)
        U[eim.operator.source_dofs] += int(len(dofs) / 2)
        fom.visualize(fom.solution_space.make_array(U),
                      title='Interpolation DOFs')

    print('RB generation ...')

    reductor = InstationaryRBReductor(eim)

    greedy_data = greedy(fom,
                         reductor,
                         fom.parameter_space.sample_uniformly(
                             args['SNAPSHOTS']),
                         use_estimator=False,
                         error_norm=lambda U: np.max(fom.l2_norm(U)),
                         extension_params={'method': 'pod'},
                         max_extensions=args['RBSIZE'],
                         pool=pool)

    rom = greedy_data['rom']

    print('\nSearching for maximum error on random snapshots ...')

    tic = time.time()

    mus = fom.parameter_space.sample_randomly(args['--test'])

    def error_analysis(N, M):
        print(f'N = {N}, M = {M}: ', end='')
        rom = reductor.reduce(N)
        rom = rom.with_(operator=rom.operator.with_cb_dim(M))
        l2_err_max = -1
        mumax = None
        for mu in mus:
            print('.', end='')
            sys.stdout.flush()
            u = rom.solve(mu)
            URB = reductor.reconstruct(u)
            U = fom.solve(mu)
            l2_err = np.max(fom.l2_norm(U - URB))
            l2_err = np.inf if not np.isfinite(l2_err) else l2_err
            if l2_err > l2_err_max:
                l2_err_max = l2_err
                mumax = mu
        print()
        return l2_err_max, mumax

    error_analysis = np.frompyfunc(error_analysis, 2, 2)

    real_rb_size = len(reductor.bases['RB'])
    real_cb_size = len(ei_data['basis'])
    if args['--plot-error-landscape']:
        N_count = min(real_rb_size - 1, args['--plot-error-landscape-N'])
        M_count = min(real_cb_size - 1, args['--plot-error-landscape-M'])
        Ns = np.linspace(1, real_rb_size, N_count).astype(np.int)
        Ms = np.linspace(1, real_cb_size, M_count).astype(np.int)
    else:
        Ns = np.array([real_rb_size])
        Ms = np.array([real_cb_size])

    N_grid, M_grid = np.meshgrid(Ns, Ms)

    errs, err_mus = error_analysis(N_grid, M_grid)
    errs = errs.astype(np.float)

    l2_err_max = errs[-1, -1]
    mumax = err_mus[-1, -1]
    toc = time.time()
    t_est = toc - tic

    print('''
    *** RESULTS ***

    Problem:
       parameter range:                    ({args[EXP_MIN]}, {args[EXP_MAX]})
       h:                                  sqrt(2)/{args[--grid]}
       grid-type:                          {args[--grid-type]}
       initial-data:                       {args[--initial-data]}
       lxf-lambda:                         {args[--lxf-lambda]}
       nt:                                 {args[--nt]}
       not-periodic:                       {args[--not-periodic]}
       num-flux:                           {args[--num-flux]}
       (vx, vy):                           ({args[--vx]}, {args[--vy]})

    Greedy basis generation:
       number of ei-snapshots:             {args[EI_SNAPSHOTS]}
       prescribed collateral basis size:   {args[EISIZE]}
       actual collateral basis size:       {real_cb_size}
       number of snapshots:                {args[SNAPSHOTS]}
       prescribed basis size:              {args[RBSIZE]}
       actual basis size:                  {real_rb_size}
       elapsed time:                       {greedy_data[time]}

    Stochastic error estimation:
       number of samples:                  {args[--test]}
       maximal L2-error:                   {l2_err_max}  (mu = {mumax})
       elapsed time:                       {t_est}
    '''.format(**locals()))

    sys.stdout.flush()
    if args['--plot-error-landscape']:
        import matplotlib.pyplot as plt
        import mpl_toolkits.mplot3d  # NOQA
        fig = plt.figure()
        ax = fig.add_subplot(111, projection='3d')
        # we have to rescale the errors since matplotlib does not support logarithmic scales on 3d plots
        # https://github.com/matplotlib/matplotlib/issues/209
        surf = ax.plot_surface(M_grid,
                               N_grid,
                               np.log(np.minimum(errs, 1)) / np.log(10),
                               rstride=1,
                               cstride=1,
                               cmap='jet')
        plt.show()
    if args['--plot-err']:
        U = fom.solve(mumax)
        URB = reductor.reconstruct(rom.solve(mumax))
        fom.visualize(
            (U, URB, U - URB),
            legend=('Detailed Solution', 'Reduced Solution', 'Error'),
            title='Maximum Error Solution',
            separate_colorbars=True)

    return ei_data, greedy_data
Exemple #5
0
def main(args):
    args = docopt(__doc__, args)
    args['--cache-region'] = args['--cache-region'].lower()
    args['--ei-alg'] = args['--ei-alg'].lower()
    assert args['--ei-alg'] in ('ei_greedy', 'deim')
    args['--grid'] = int(args['--grid'])
    args['--grid-type'] = args['--grid-type'].lower()
    assert args['--grid-type'] in ('rect', 'tria')
    args['--initial-data'] = args['--initial-data'].lower()
    assert args['--initial-data'] in ('sin', 'bump')
    args['--lxf-lambda'] = float(args['--lxf-lambda'])
    args['--nt'] = int(args['--nt'])
    args['--not-periodic'] = bool(args['--not-periodic'])
    args['--num-flux'] = args['--num-flux'].lower()
    assert args['--num-flux'] in ('lax_friedrichs', 'engquist_osher')
    args['--plot-error-landscape-N'] = int(args['--plot-error-landscape-N'])
    args['--plot-error-landscape-M'] = int(args['--plot-error-landscape-M'])
    args['--test'] = int(args['--test'])
    args['--vx'] = float(args['--vx'])
    args['--vy'] = float(args['--vy'])
    args['--ipython-engines'] = int(args['--ipython-engines'])
    args['EXP_MIN'] = int(args['EXP_MIN'])
    args['EXP_MAX'] = int(args['EXP_MAX'])
    args['EI_SNAPSHOTS'] = int(args['EI_SNAPSHOTS'])
    args['EISIZE'] = int(args['EISIZE'])
    args['SNAPSHOTS'] = int(args['SNAPSHOTS'])
    args['RBSIZE'] = int(args['RBSIZE'])

    print('Setup Problem ...')
    problem = burgers_problem_2d(vx=args['--vx'], vy=args['--vy'], initial_data_type=args['--initial-data'],
                                 parameter_range=(args['EXP_MIN'], args['EXP_MAX']), torus=not args['--not-periodic'])

    print('Discretize ...')
    if args['--grid-type'] == 'rect':
        args['--grid'] *= 1. / math.sqrt(2)
    fom, _ = discretize_instationary_fv(
        problem,
        diameter=1. / args['--grid'],
        grid_type=RectGrid if args['--grid-type'] == 'rect' else TriaGrid,
        num_flux=args['--num-flux'],
        lxf_lambda=args['--lxf-lambda'],
        nt=args['--nt']
    )

    if args['--cache-region'] != 'none':
        fom.enable_caching(args['--cache-region'])

    print(fom.operator.grid)

    print(f'The parameter type is {fom.parameter_type}')

    if args['--plot-solutions']:
        print('Showing some solutions')
        Us = ()
        legend = ()
        for mu in fom.parameter_space.sample_uniformly(4):
            print(f"Solving for exponent = {mu['exponent']} ... ")
            sys.stdout.flush()
            Us = Us + (fom.solve(mu),)
            legend = legend + (f"exponent: {mu['exponent']}",)
        fom.visualize(Us, legend=legend, title='Detailed Solutions', block=True)

    pool = new_parallel_pool(ipython_num_engines=args['--ipython-engines'], ipython_profile=args['--ipython-profile'])
    eim, ei_data = interpolate_operators(fom, ['operator'],
                                         fom.parameter_space.sample_uniformly(args['EI_SNAPSHOTS']),  # NOQA
                                         error_norm=fom.l2_norm, product=fom.l2_product,
                                         max_interpolation_dofs=args['EISIZE'],
                                         alg=args['--ei-alg'],
                                         pool=pool)

    if args['--plot-ei-err']:
        print('Showing some EI errors')
        ERRs = ()
        legend = ()
        for mu in fom.parameter_space.sample_randomly(2):
            print(f"Solving for exponent = \n{mu['exponent']} ... ")
            sys.stdout.flush()
            U = fom.solve(mu)
            U_EI = eim.solve(mu)
            ERR = U - U_EI
            ERRs = ERRs + (ERR,)
            legend = legend + (f"exponent: {mu['exponent']}",)
            print(f'Error: {np.max(fom.l2_norm(ERR))}')
        fom.visualize(ERRs, legend=legend, title='EI Errors', separate_colorbars=True)

        print('Showing interpolation DOFs ...')
        U = np.zeros(U.dim)
        dofs = eim.operator.interpolation_dofs
        U[dofs] = np.arange(1, len(dofs) + 1)
        U[eim.operator.source_dofs] += int(len(dofs)/2)
        fom.visualize(fom.solution_space.make_array(U),
                      title='Interpolation DOFs')

    print('RB generation ...')

    reductor = InstationaryRBReductor(eim)

    greedy_data = greedy(fom, reductor, fom.parameter_space.sample_uniformly(args['SNAPSHOTS']),
                         use_estimator=False, error_norm=lambda U: np.max(fom.l2_norm(U)),
                         extension_params={'method': 'pod'}, max_extensions=args['RBSIZE'],
                         pool=pool)

    rom = greedy_data['rom']

    print('\nSearching for maximum error on random snapshots ...')

    tic = time.time()

    mus = fom.parameter_space.sample_randomly(args['--test'])

    def error_analysis(N, M):
        print(f'N = {N}, M = {M}: ', end='')
        rom = reductor.reduce(N)
        rom = rom.with_(operator=rom.operator.with_cb_dim(M))
        l2_err_max = -1
        mumax = None
        for mu in mus:
            print('.', end='')
            sys.stdout.flush()
            u = rom.solve(mu)
            URB = reductor.reconstruct(u)
            U = fom.solve(mu)
            l2_err = np.max(fom.l2_norm(U - URB))
            l2_err = np.inf if not np.isfinite(l2_err) else l2_err
            if l2_err > l2_err_max:
                l2_err_max = l2_err
                mumax = mu
        print()
        return l2_err_max, mumax
    error_analysis = np.frompyfunc(error_analysis, 2, 2)

    real_rb_size = len(reductor.bases['RB'])
    real_cb_size = len(ei_data['basis'])
    if args['--plot-error-landscape']:
        N_count = min(real_rb_size - 1, args['--plot-error-landscape-N'])
        M_count = min(real_cb_size - 1, args['--plot-error-landscape-M'])
        Ns = np.linspace(1, real_rb_size, N_count).astype(np.int)
        Ms = np.linspace(1, real_cb_size, M_count).astype(np.int)
    else:
        Ns = np.array([real_rb_size])
        Ms = np.array([real_cb_size])

    N_grid, M_grid = np.meshgrid(Ns, Ms)

    errs, err_mus = error_analysis(N_grid, M_grid)
    errs = errs.astype(np.float)

    l2_err_max = errs[-1, -1]
    mumax = err_mus[-1, -1]
    toc = time.time()
    t_est = toc - tic

    print('''
    *** RESULTS ***

    Problem:
       parameter range:                    ({args[EXP_MIN]}, {args[EXP_MAX]})
       h:                                  sqrt(2)/{args[--grid]}
       grid-type:                          {args[--grid-type]}
       initial-data:                       {args[--initial-data]}
       lxf-lambda:                         {args[--lxf-lambda]}
       nt:                                 {args[--nt]}
       not-periodic:                       {args[--not-periodic]}
       num-flux:                           {args[--num-flux]}
       (vx, vy):                           ({args[--vx]}, {args[--vy]})

    Greedy basis generation:
       number of ei-snapshots:             {args[EI_SNAPSHOTS]}
       prescribed collateral basis size:   {args[EISIZE]}
       actual collateral basis size:       {real_cb_size}
       number of snapshots:                {args[SNAPSHOTS]}
       prescribed basis size:              {args[RBSIZE]}
       actual basis size:                  {real_rb_size}
       elapsed time:                       {greedy_data[time]}

    Stochastic error estimation:
       number of samples:                  {args[--test]}
       maximal L2-error:                   {l2_err_max}  (mu = {mumax})
       elapsed time:                       {t_est}
    '''.format(**locals()))

    sys.stdout.flush()
    if args['--plot-error-landscape']:
        import matplotlib.pyplot as plt
        import mpl_toolkits.mplot3d             # NOQA
        fig = plt.figure()
        ax = fig.add_subplot(111, projection='3d')
        # we have to rescale the errors since matplotlib does not support logarithmic scales on 3d plots
        # https://github.com/matplotlib/matplotlib/issues/209
        surf = ax.plot_surface(M_grid, N_grid, np.log(np.minimum(errs, 1)) / np.log(10),
                               rstride=1, cstride=1, cmap='jet')
        plt.show()
    if args['--plot-err']:
        U = fom.solve(mumax)
        URB = reductor.reconstruct(rom.solve(mumax))
        fom.visualize((U, URB, U - URB), legend=('Detailed Solution', 'Reduced Solution', 'Error'),
                      title='Maximum Error Solution', separate_colorbars=True)

    return ei_data, greedy_data