Exemple #1
0
 def sample_randomly(self, count=None, random_state=None, seed=None):
     """Iterator sampling random |Parameters| from the space."""
     assert not random_state or seed is None
     c = 0
     ranges = self.ranges
     random_state = random_state or new_random_state(seed)
     while count is None or c < count:
         yield Parameter(((k, random_state.uniform(ranges[k][0], ranges[k][1], shp))
                          for k, shp in self.parameter_type.iteritems()))
         c += 1
Exemple #2
0
 def sample_randomly(self, count=None, random_state=None, seed=None):
     """Iterator sampling random |Parameters| from the space."""
     assert not random_state or seed is None
     c = 0
     ranges = self.ranges
     random_state = random_state or new_random_state(seed)
     while count is None or c < count:
         yield Parameter(
             ((k, random_state.uniform(ranges[k][0], ranges[k][1], shp))
              for k, shp in self.parameter_type.iteritems()))
         c += 1
Exemple #3
0
    def sample_randomly(self, count=None, random_state=None, seed=None):
        """Randomly sample |Parameters| from the space.

        .. warning::

            When neither `random_state` nor `seed` are specified,
            repeated calls to this method will return the same sequence
            of parameters!


        Parameters
        ----------
        count
            `None` or number of random parameters (see below).
        random_state
            :class:`~numpy.random.RandomState` to use for sampling.
            If `None`, a new random state is generated using `seed`
            as random seed.
        seed
            Random seed to use. If `None`, the
            :func:`default <pymor.tools.random.new_random_state>` random seed
            is used.

        Returns
        -------
        If `count` is `None`, an inexhaustible iterator returning random
        |Parameters|.
        Otherwise a list of `count` random |Parameters|.
        """
        assert not random_state or seed is None
        ranges = self.ranges
        random_state = random_state or new_random_state(seed)
        get_param = lambda: Parameter(
            ((k, random_state.uniform(ranges[k][0], ranges[k][1], shp))
             for k, shp in sorted(self.parameter_type.items())))
        # sorted is needed to ensure that the sampling of parameter components happens in an
        # deterministic order
        if count is None:

            def param_generator():
                while True:
                    yield get_param()

            return param_generator()
        else:
            return [get_param() for _ in range(count)]
Exemple #4
0
    def sample_randomly(self, count=None, random_state=None, seed=None):
        """Randomly sample |Parameters| from the space.

        .. warning::

            When neither `random_state` nor `seed` are specified,
            repeated calls to this method will return the same sequence
            of parameters!


        Parameters
        ----------
        count
            `None` or number of random parameters (see below).
        random_state
            :class:`~numpy.random.RandomState` to use for sampling.
            If `None`, a new random state is generated using `seed`
            as random seed.
        seed
            Random seed to use. If `None`, the
            :func:`default <pymor.tools.random.new_random_state>` random seed
            is used.

        Returns
        -------
        If `count` is `None`, an inexhaustible iterator returning random
        |Parameters|.
        Otherwise a list of `count` random |Parameters|.
        """
        assert not random_state or seed is None
        ranges = self.ranges
        random_state = random_state or new_random_state(seed)
        get_param = lambda: Parameter(((k, random_state.uniform(ranges[k][0], ranges[k][1], shp))
                                       for k, shp in sorted(self.parameter_type.items())))
        # sorted is needed to ensure that the sampling of parameter components happens in an
        # deterministic order
        if count is None:
            def param_generator():
                while True:
                    yield get_param()
            return param_generator()
        else:
            return [get_param() for _ in range(count)]