Exemple #1
0
    def test_from_continuous(self):

        # test from continuous
        for i in range(10):
            n = np.random.randint(1, 10)
            m = np.random.randint(1, 10)
            A = np.random.rand(n, n)
            B = np.random.rand(n, m)
            c = np.random.rand(n)

            # reduce discretization step until the two method are almost equivalent
            h = .01
            convergence = False
            while not convergence:
                S_ee = AffineSystem.from_continuous(A, B, c, h,
                                                    'explicit_euler')
                S_zoh = AffineSystem.from_continuous(A, B, c, h,
                                                     'zero_order_hold')
                convergence = np.allclose(S_ee.A, S_zoh.A) and np.allclose(
                    S_ee.B, S_zoh.B) and np.allclose(S_ee.c, S_zoh.c)
                if not convergence:
                    h /= 10.
            self.assertTrue(convergence)
        self.assertRaises(ValueError, AffineSystem.from_continuous, A, B, c, h,
                          'gatto')
Exemple #2
0
    def test_from_continuous_and_symbolic(self):

        # generate random matrices
        h = .01
        for i in range(10):
            n = np.random.randint(1, 10)
            m = np.random.randint(1, 10)
            A = np.random.rand(n,n)
            B = np.random.rand(n,m)
            c = np.random.rand(n)

            # test .from_continuous(), explicit euler vs zoh
            convergence = False
            while not convergence:
                S_ee = AffineSystem.from_continuous(A, B, c, h, 'explicit_euler')
                S_zoh = AffineSystem.from_continuous(A, B, c, h, 'zero_order_hold')
                convergence = np.allclose(S_ee.A, S_zoh.A) and np.allclose(S_ee.B, S_zoh.B) and np.allclose(S_ee.c, S_zoh.c)
                if not convergence:
                    h /= 10.
            self.assertTrue(convergence)

            # test .from_symbolic()
            x = sp.Matrix([sp.Symbol('x'+str(i), real=True) for i in range(n)])
            u = sp.Matrix([sp.Symbol('u'+str(i), real=True) for i in range(m)])
            x_next = sp.Matrix(A)*x + sp.Matrix(B)*u + sp.Matrix(c)
            S = AffineSystem.from_symbolic(x, u, x_next)
            np.testing.assert_array_almost_equal(S.A, A)
            np.testing.assert_array_almost_equal(S.B, B)
            np.testing.assert_array_almost_equal(S.c, c)

            # test .from_symbolic_continuous()
            S = AffineSystem.from_symbolic_continuous(x, u, x_next, h, 'explicit_euler')
            np.testing.assert_array_almost_equal(S.A, S_ee.A)
            np.testing.assert_array_almost_equal(S.B, S_ee.B)
            np.testing.assert_array_almost_equal(S.c, S_ee.c)
            S = AffineSystem.from_symbolic_continuous(x, u, x_next, h, 'zero_order_hold')
            np.testing.assert_array_almost_equal(S.A, S_zoh.A)
            np.testing.assert_array_almost_equal(S.B, S_zoh.B)
            np.testing.assert_array_almost_equal(S.c, S_zoh.c)

        # negative time step
        self.assertRaises(ValueError, AffineSystem.from_continuous, A, B, c, -.1, 'explicit_euler')
        self.assertRaises(ValueError, AffineSystem.from_symbolic_continuous, x, u, x_next, -.1, 'explicit_euler')
        self.assertRaises(ValueError, AffineSystem.from_continuous, A, B, c, -.1, 'zero_order_hold')
        self.assertRaises(ValueError, AffineSystem.from_symbolic_continuous, x, u, x_next, -.1, 'zero_order_hold')

        # wrong input size
        x_wrong = sp.Matrix([sp.Symbol('x_wrong'+str(i), real=True) for i in range(n+1)])
        u_wrong = sp.Matrix([sp.Symbol('u_wrong'+str(i), real=True) for i in range(m+1)])
        self.assertRaises(TypeError, AffineSystem.from_symbolic, x_wrong, u, x_next)
        self.assertRaises(TypeError, AffineSystem.from_symbolic, x, u_wrong, x_next)
        self.assertRaises(TypeError, AffineSystem.from_symbolic_continuous, x_wrong, u, x_next, h, 'explicit_euler')
        self.assertRaises(TypeError, AffineSystem.from_symbolic_continuous, x, u_wrong, x_next, h, 'explicit_euler')
        self.assertRaises(TypeError, AffineSystem.from_symbolic_continuous, x_wrong, u, x_next, h, 'zero_order_hold')
        self.assertRaises(TypeError, AffineSystem.from_symbolic_continuous, x, u_wrong, x_next, h, 'zero_order_hold')

        # from continuous wrong method
        self.assertRaises(ValueError, AffineSystem.from_continuous, A, B, c, h, 'gatto')
        self.assertRaises(ValueError, AffineSystem.from_symbolic_continuous, x, u, x_next, h, 'gatto')
Exemple #3
0
    def test_intialization(self):
        np.random.seed(1)

        # different number of systems and domains
        A = np.ones((3, 3))
        B = np.ones((3, 2))
        c = np.ones(3)
        S = AffineSystem(A, B, c)
        affine_systems = [S] * 5
        F = np.ones((9, 5))
        g = np.ones(9)
        D = Polyhedron(F, g)
        domains = [D] * 4
        self.assertRaises(ValueError, PieceWiseAffineSystem, affine_systems,
                          domains)

        # incopatible number of states in affine systems
        domains += [D, D]
        A = np.ones((2, 2))
        B = np.ones((2, 2))
        c = np.ones(2)
        affine_systems.append(AffineSystem(A, B, c))
        self.assertRaises(ValueError, PieceWiseAffineSystem, affine_systems,
                          domains)

        # incopatible number of inputs in affine systems
        del affine_systems[-1]
        A = np.ones((3, 3))
        B = np.ones((3, 1))
        c = np.ones(3)
        affine_systems.append(AffineSystem(A, B, c))
        self.assertRaises(ValueError, PieceWiseAffineSystem, affine_systems,
                          domains)

        # different dimensinality of the domains and the systems
        del affine_systems[-1]
        affine_systems += [S, S]
        F = np.ones((9, 4))
        g = np.ones(9)
        domains.append(Polyhedron(F, g))
        self.assertRaises(ValueError, PieceWiseAffineSystem, affine_systems,
                          domains)

        # different dimensinality of the domains and the systems
        F = np.ones((9, 4))
        g = np.ones(9)
        D = Polyhedron(F, g)
        domains = [D] * 7
        self.assertRaises(ValueError, PieceWiseAffineSystem, affine_systems,
                          domains)
Exemple #4
0
    def test_is_well_posed(self):

        # domains
        D0 = Polyhedron.from_bounds(-np.ones(3), np.ones(3))
        D1 = Polyhedron.from_bounds(np.zeros(3), 2.*np.ones(3))
        domains = [D0, D1]

        # pwa system
        A = np.ones((2,2))
        B = np.ones((2,1))
        c = np.ones(2)
        S = AffineSystem(A, B, c)
        affine_systems = [S]*2
        S_pwa = PieceWiseAffineSystem(affine_systems, domains)

        # check if well posed
        self.assertFalse(S_pwa.is_well_posed())

        # make it well posed
        D1.add_lower_bound(np.ones(3))
        D2 = Polyhedron.from_bounds(2.*np.ones(3), 3.*np.ones(3))
        domains = [D0, D1, D2]
        affine_systems = [S]*3
        S_pwa = PieceWiseAffineSystem(affine_systems, domains)
        self.assertTrue(S_pwa.is_well_posed())
Exemple #5
0
    def test_condense_and_simulate(self):

        # random systems
        for i in range(10):
            n = np.random.randint(1, 10)
            m = np.random.randint(1, 10)
            N = np.random.randint(10, 50)
            x0 = np.random.rand(n)
            u = [np.random.rand(m) / 10. for j in range(N)]
            A = np.random.rand(n, n) / 10.
            B = np.random.rand(n, m) / 10.
            c = np.random.rand(n) / 10.
            S = AffineSystem(A, B, c)

            # simulate vs condense
            x = S.simulate(x0, u)
            A_bar, B_bar, c_bar = S.condense(N)
            np.testing.assert_array_almost_equal(
                np.concatenate(x),
                A_bar.dot(x0) + B_bar.dot(np.concatenate(u)) + c_bar)
Exemple #6
0
def pwa_from_RigidBodyPlant(plant, linearization_points, X, U, h, method='zero_order_hold'):
    """

    Arguments
    ----------
    plant : RigidBodyPlant
        RigidBodyPlant of the robot.
    linearization_points : list of numpy.ndarray
        Points in the state space where to linearize the dynamics.
    X : Polyhedron
        Overall bounds of the state space.
    U : Polyhedron
        Overall bounds of the control space.
    h : float
        Sampling time for the time discretization of the PWA system.
    method : string
        Method used to discretize each piece of the PWA dynamics ('explicit_euler' or 'zero_order_hold').

    Returns
    ----------
    PWA : PieceWiseAffineSystem
    """

    # partition of the state space
    X_partition = constrained_voronoi(linearization_points, X)
    domains = [Xi.cartesian_product(U) for Xi in X_partition]

    # create context
    context = plant.CreateDefaultContext()
    state = context.get_mutable_continuous_state_vector()
    input = BasicVector(np.array([0.]))
    context.FixInputPort(0, input)

    # affine systems
    affine_systems = []
    for x in linearization_points:
        state.SetFromVector(x)
        taylor_approx = FirstOrderTaylorApproximation(plant, context)
        affine_system = AffineSystem.from_continuous(
            taylor_approx.A(),
            taylor_approx.B(),
            taylor_approx.f0(),
            h,
            method
            )
        affine_systems.append(affine_system)

    return PieceWiseAffineSystem(affine_systems, domains)
Exemple #7
0
    def _condense_program(self):
        """
        Generates and stores the optimal control problem in condensed form.

        Returns
        ----------
        instance of MultiParametricQuadraticProgram
            Condensed mpQP.
        """

        # create fake PWA system and use PWA condenser
        c = np.zeros((self.S.nx, 1))
        S = AffineSystem(self.S.A, self.S.B, c)
        S = PieceWiseAffineSystem([S], [self.D])
        mode_sequence = [0] * self.N

        return condense_optimal_control_problem(S, self.Q, self.R, self.P,
                                                self.X_N, mode_sequence)
Exemple #8
0
    def test_condense_and_simulate_and_get_mode(self):
        np.random.seed(1)

        # test with random systems
        for i in range(10):

            # test dimensions
            n = np.random.randint(1, 10)
            m = np.random.randint(1, 10)
            N = np.random.randint(10, 50)

            # initial state
            x0 = np.random.rand(n)

            # initialize loop variables
            x_t = x0
            x = x0
            u = np.zeros(0)
            u_list = []
            affine_systems = []
            domains = []

            # simulate for N steps
            for t in range(N):

                # generate random dynamics
                A_t = np.random.rand(n,n)/10.
                B_t = np.random.rand(n,m)/10.
                c_t = np.random.rand(n)/10.

                # simulate with random input
                u_t = np.random.rand(m)/10.
                u = np.concatenate((u, u_t))
                u_list.append(u_t)
                x_tp1 = A_t.dot(x_t) + B_t.dot(u_t) + c_t
                x = np.concatenate((x, x_tp1))

                # create a domain that contains x and u (it has to be super-tight so that the pwa system is well posed!)
                D = Polyhedron.from_bounds(
                    np.concatenate((x_t/1.01, u_t/1.01)),
                    np.concatenate((x_t*1.01, u_t*1.01))
                    )
                domains.append(D)
                affine_systems.append(AffineSystem(A_t, B_t, c_t))

                # reset state
                x_t = x_tp1

            # construct pwa system
            S = PieceWiseAffineSystem(affine_systems, domains)

            # test condense
            mode_sequence = range(N)
            A_bar, B_bar, c_bar = S.condense(mode_sequence)
            np.testing.assert_array_almost_equal(
                x,
                A_bar.dot(x0) + B_bar.dot(u) + c_bar
                )

            # test simulate
            x_list, mode_sequence = S.simulate(x0, u_list)
            np.testing.assert_array_almost_equal(x, np.concatenate(x_list))

            # test get mode
            for t in range(N):
                self.assertTrue(S.get_mode(x_list[t], u_list[t]) == t)
Exemple #9
0
    def test_feedforward_feedback_and_get_mpqp(self):

        # numeric parameters
        m = 1.
        l = 1.
        g = 10.
        k = 100.
        d = .1
        h = .01

        # discretization method
        method = 'explicit_euler'

        # dynamics n.1
        A1 = np.array([[0., 1.], [g / l, 0.]])
        B1 = np.array([[0.], [1 / (m * l**2.)]])
        S1 = LinearSystem.from_continuous(A1, B1, h, method)

        # dynamics n.2
        A2 = np.array([[0., 1.], [g / l - k / m, 0.]])
        B2 = B1
        c2 = np.array([[0.], [k * d / (m * l)]])
        S2 = AffineSystem.from_continuous(A2, B2, c2, h, method)

        # list of dynamics
        S_list = [S1, S2]

        # state domain n.1
        x1_min = np.array([[-2. * d / l], [-1.5]])
        x1_max = np.array([[d / l], [1.5]])
        X1 = Polyhedron.from_bounds(x1_min, x1_max)

        # state domain n.2
        x2_min = np.array([[d / l], [-1.5]])
        x2_max = np.array([[2. * d / l], [1.5]])
        X2 = Polyhedron.from_bounds(x2_min, x2_max)

        # input domain
        u_min = np.array([[-4.]])
        u_max = np.array([[4.]])
        U = Polyhedron.from_bounds(u_min, u_max)

        # domains
        D1 = X1.cartesian_product(U)
        D2 = X2.cartesian_product(U)
        D_list = [D1, D2]

        # pwa system
        S = PieceWiseAffineSystem(S_list, D_list)

        # controller parameters
        N = 20
        Q = np.eye(S.nx)
        R = np.eye(S.nu)

        # terminal set and cost
        P, K = S1.solve_dare(Q, R)
        X_N = S1.mcais(K, D1)

        # hybrid MPC controller
        controller = HybridModelPredictiveController(S, N, Q, R, P, X_N)

        # compare with lqr
        x0 = np.array([[.0], [.6]])
        self.assertTrue(X_N.contains(x0))
        V_lqr = .5 * x0.T.dot(P).dot(x0)[0, 0]
        x_lqr = [x0]
        u_lqr = []
        for t in range(N):
            u_lqr.append(K.dot(x_lqr[t]))
            x_lqr.append((S1.A + S1.B.dot(K)).dot(x_lqr[t]))
        u_hmpc, x_hmpc, ms_hmpc, V_hmpc = controller.feedforward(x0)
        np.testing.assert_array_almost_equal(np.vstack((u_lqr)),
                                             np.vstack((u_hmpc)))
        np.testing.assert_array_almost_equal(np.vstack((x_lqr)),
                                             np.vstack((x_hmpc)))
        self.assertAlmostEqual(V_lqr, V_hmpc)
        self.assertTrue(all([m == 0 for m in ms_hmpc]))
        np.testing.assert_array_almost_equal(u_hmpc[0],
                                             controller.feedback(x0))

        # compare with linear mpc
        x0 = np.array([[.0], [.8]])
        self.assertFalse(X_N.contains(x0))
        linear_controller = ModelPredictiveController(S1, N, Q, R, P, D1, X_N)
        u_lmpc, V_lmpc = linear_controller.feedforward(x0)
        x_lmpc = S1.simulate(x0, u_lmpc)
        u_hmpc, x_hmpc, ms_hmpc, V_hmpc = controller.feedforward(x0)
        np.testing.assert_array_almost_equal(np.vstack((u_lmpc)),
                                             np.vstack((u_hmpc)))
        np.testing.assert_array_almost_equal(np.vstack((x_lmpc)),
                                             np.vstack((x_hmpc)))
        self.assertAlmostEqual(V_lmpc, V_hmpc)
        self.assertTrue(all([m == 0 for m in ms_hmpc]))
        np.testing.assert_array_almost_equal(u_hmpc[0],
                                             controller.feedback(x0))

        # test get mpqp
        mpqp = controller.get_mpqp(ms_hmpc)
        sol = mpqp.solve(x0)
        np.testing.assert_array_almost_equal(np.vstack((u_lmpc)),
                                             sol['argmin'])
        self.assertAlmostEqual(V_lmpc, sol['min'])

        # with change of the mode sequence
        x0 = np.array([[.08], [.8]])
        u_hmpc, x_hmpc, ms_hmpc, V_hmpc = controller.feedforward(x0)
        self.assertTrue(sum(ms_hmpc) >= 1)
        mpqp = controller.get_mpqp(ms_hmpc)
        sol = mpqp.solve(x0)
        np.testing.assert_array_almost_equal(np.vstack((u_hmpc)),
                                             sol['argmin'])
        self.assertAlmostEqual(V_hmpc, sol['min'])