area = peak_sum_area(im, peak) peak.area = area # print some details UID = peak.UID # height as sum of the intensities of the apexing ions height = sum(peak.get_mass_spectrum().mass_spec.tolist()) print(UID + f", {rt:.2f}, {height:.2f}, {peak.area:.2f}") # TIC from raw data tic = data.get_tic() # baseline correction for TIC tic_bc = tophat(tic, struct="1.5m") # Get Ion Chromatograms for all m/z channels n_mz = len(im.get_mass_list()) ic_list = [] for m in range(n_mz): ic_list.append(im.get_ic_at_index(m)) # Create a new display object, this time plot the ICs # and the TIC, as well as the peak list display = Display() display.plot_tic(tic_bc, 'TIC BC') for ic in ic_list: display.plot_ic(ic) display.plot_peaks(new_peak_list, 'Peaks') display.do_plotting('TIC, and PyMassSpec Detected Peaks') display.show_chart()
# real_peak_list is PyMassSpec' best guess at the true peak list ################## Run Simulator ###################### # Simulator takes a peak list, time_list and mass_list # and returns an IntensityMatrix object. # The mass_list and time_list are the same for the real # data and the simulated data. time_list = real_im.get_time_list() mass_list = real_im.get_mass_list() sim_im = gcms_sim(time_list, mass_list, real_peak_list) # sim_im is an IntensityMatrix object # select one ic to add noise to from this simulated intensity matrix ic = sim_im.get_ic_at_mass(73) ic_add_noise = copy.deepcopy(ic) # Now add noise to the simulated intensity matrix object scale = 1000 add_gaussc_noise_ic(ic_add_noise, scale) display = Display() display.plot_ic(ic, label="Without Noise") display.plot_ic(ic_add_noise, label="With Noise Added") display.do_plotting('Simulated IC for m/z = 73, with and without noise') display.show_chart()