def rst_table_modules(classifier=False): """ produces a table with all modules recommended to do machine learning @param classifier keep classifiers? @return string """ mod = ensae_fullset() mod.sort() df = pandas.DataFrame(_.as_dict(rst_link=True) for _ in mod) if classifier: df = df[[ "usage", "rst_link", "kind", "version", "license", "purpose", "classifier" ]] df["classifier"] = df.apply( lambda row: classifiers2string(row["classifier"]), axis=1) df.columns = [ "usage", "name", "kind", "version", "license", "purpose", "classifier" ] else: df = df[["usage", "rst_link", "kind", "version", "license", "purpose"]] df.columns = ["usage", "name", "kind", "version", "license", "purpose"] df["lname"] = df["name"].apply(lambda s: s.lower()) df = df.sort_values("lname").drop("lname", axis=1) df = df.reset_index(drop=True).reset_index(drop=False) return df2rst(df)
def rst_table_modules(): """ produces a table with all modules recommended to do machine learning @return string """ mod = ensae_fullset() mod.sort() df = pandas.DataFrame(_.as_dict(rst_link=True) for _ in mod) df = df[["usage", "rst_link", "kind", "version", "license", "purpose", "classifier"]] df.columns = ["usage", "name", "kind", "version", "license", "purpose", "classifier"] return df2rst(df)
def rst_table_modules(): """ produces a table with all modules recommended to do machine learning @return string """ mod = ensae_fullset() mod.sort() df = pandas.DataFrame(_.as_dict(rst_link=True) for _ in mod) df = df[["usage", "rst_link", "kind", "version", "license", "purpose", "classifier"]] df["classifier"] = df.apply( lambda row: classifiers2string(row["classifier"]), axis=1) df.columns = ["usage", "name", "kind", "version", "license", "purpose", "classifier"] return df2rst(df)
def rst_table_modules(): """ produces a table with all modules recommended to do machine learning @return string """ mod = ensae_fullset() mod.sort() df = pandas.DataFrame(_.as_dict(rst_link=True) for _ in mod) df = df[["usage", "rst_link", "kind", "version", "license", "purpose", "classifier"]] df["classifier"] = df.apply( lambda row: classifiers2string(row["classifier"]), axis=1) df.columns = ["usage", "name", "kind", "version", "license", "purpose", "classifier"] df["lname"] = df["name"].apply(lambda s: s.lower()) df = df.sort_values("lname").drop("lname", axis=1) return df2rst(df)
try: import pyquickhelper except ImportError: import sys sys.path.append("../pyquickhelper/src") import pyquickhelper if __name__ == "__main__": import sys sys.path.append("src") from pyquickhelper.loghelper import fLOG fLOG(OutputPrint=True) from ensae_teaching_cs.automation.win_setup_helper import last_function from pymyinstall import win_python_setup from pymyinstall.packaged import ensae_fullset list_modules = ensae_fullset() win_python_setup(module_list=list_modules, verbose=True, download_only=False, no_setup=False, last_function=last_function, # 3.2.5 to be able to use rpy2 selection={"R==3.2.5", "tdm", "jdk"}, documentation=False, source="2", fLOG=fLOG)
sys.path.append("../pymyinstall/src") import pymyinstall try: import pyquickhelper except ImportError: import sys sys.path.append("../pyquickhelper/src") import pyquickhelper if __name__ == "__main__": import sys sys.path.append("src") from pyquickhelper import fLOG fLOG(OutputPrint=True) from ensae_teaching_cs.automation.win_setup_helper import last_function from pymyinstall import win_python_setup from pymyinstall.packaged import ensae_fullset list_modules = ensae_fullset() win_python_setup(module_list=list_modules, verbose=True, download_only=False, no_setup=False, last_function=last_function, selection={"R", "tdm"}, documentation=False, fLOG=fLOG)