def __runChildLoop(self, readFileNo, writeFileNo): childReadPipe = os.fdopen(readFileNo) childWritePipe = os.fdopen(writeFileNo, "w") smi.nvmlInit() # hack - get actual device ID somehow devObj = smi.nvmlDeviceGetHandleByIndex(0) memObj = smi.nvmlDeviceGetMemoryInfo(devObj) utilObj = smi.nvmlDeviceGetUtilizationRates(devObj) initialMemUsed = memObj.used initialGpuUtil = utilObj.gpu controlStr = self.__waitForInput(childReadPipe) while True: memObj = smi.nvmlDeviceGetMemoryInfo(devObj) utilObj = smi.nvmlDeviceGetUtilizationRates(devObj) memUsed = memObj.used - initialMemUsed gpuUtil = utilObj.gpu - initialGpuUtil if controlStr.strip() == "1": self.__writeToPipe(childWritePipe, "%s %s\n" % (memUsed, gpuUtil)) elif controlStr.strip() == "0": break controlStr = self.__waitForInput(childReadPipe) smi.nvmlShutdown() childReadPipe.close() childWritePipe.close()
def getSysInfo(requirements): # Use Node Label from Jenkins if possible label = os.environ.get('ASV_LABEL') uname = platform.uname() if label == None: label = uname.machine commitHash = getCommandOutput("git rev-parse HEAD") commitTime = getCommandOutput("git log -n1 --pretty=%%ct %s" % commitHash) commitTime = str(int(commitTime) * 1000) # ASV wants commit to be in milliseconds gpuDeviceNums = [0] gpuDeviceHandle = smi.nvmlDeviceGetHandleByIndex(gpuDeviceNums[0]) bInfo = BenchmarkInfo( machineName=label, cudaVer=getCommandOutput( "nvcc --version | grep release | awk '{print $5}' | tr -d ,"), osType="%s %s" % (uname.system, uname.release), pythonVer=platform.python_version(), commitHash=commitHash, commitTime=commitTime, gpuType=smi.nvmlDeviceGetName(gpuDeviceHandle).decode(), cpuType=uname.processor, arch=uname.machine, ram="%d" % psutil.virtual_memory().total, requirements=requirements) return bInfo
def pytest_sessionfinish(session, exitstatus): gpuBenchSess = session.config._gpubenchmarksession config = session.config asvOutputDir = config.getoption("benchmark_asv_output_dir") asvMetadata = config.getoption("benchmark_asv_metadata") gpuDeviceNums = config.getoption("benchmark_gpu_device") if asvOutputDir and gpuBenchSess.benchmarks: # FIXME: do not lookup commit metadata if already specified on the # command line. (commitHash, commitTime) = asvdbUtils.getCommitInfo() (commitRepo, commitBranch) = asvdbUtils.getRepoInfo() # FIXME: do not make pynvml calls if all the metadata provided by pynvml # was specified on the command line. smi.nvmlInit() # only supporting 1 GPU gpuDeviceHandle = smi.nvmlDeviceGetHandleByIndex(gpuDeviceNums[0]) uname = platform.uname() machineName = asvMetadata.get("machineName", uname.machine) cpuType = asvMetadata.get("cpuType", uname.processor) arch = asvMetadata.get("arch", uname.machine) pythonVer = asvMetadata.get("pythonVer", ".".join(platform.python_version_tuple()[:-1])) cudaVer = asvMetadata.get("cudaVer", _getCudaVersion() or "unknown") osType = asvMetadata.get("osType", _getOSName() or platform.linux_distribution()[0]) gpuType = asvMetadata.get("gpuType", smi.nvmlDeviceGetName(gpuDeviceHandle).decode()) ram = asvMetadata.get("ram", "%d" % psutil.virtual_memory().total) gpuRam = asvMetadata.get("gpuRam", "%d" % smi.nvmlDeviceGetMemoryInfo(gpuDeviceHandle).total) commitHash = asvMetadata.get("commitHash", commitHash) commitTime = asvMetadata.get("commitTime", commitTime) commitRepo = asvMetadata.get("commitRepo", commitRepo) commitBranch = asvMetadata.get("commitBranch", commitBranch) requirements = asvMetadata.get("requirements", "{}") suffixDict = dict(gpu_util="gpuutil", gpu_mem="gpumem", mean="time", ) unitsDict = dict(gpu_util="percent", gpu_mem="bytes", mean="seconds", ) db = ASVDb(asvOutputDir, commitRepo, [commitBranch]) bInfo = BenchmarkInfo(machineName=machineName, cudaVer=cudaVer, osType=osType, pythonVer=pythonVer, commitHash=commitHash, commitTime=commitTime, branch=commitBranch, gpuType=gpuType, cpuType=cpuType, arch=arch, ram=ram, gpuRam=gpuRam, requirements=requirements) for bench in gpuBenchSess.benchmarks: benchName = _getHierBenchNameFromFullname(bench.fullname) # build the final params dict by extracting them from the # bench.params dictionary. Not all benchmarks are parameterized params = {} bench_params = bench.params.items() if bench.params is not None else [] for (paramName, paramVal) in bench_params: # If the params are coming from a fixture, handle them # differently since they will (should be) stored in a special # variable accessible with the name of the fixture. # # NOTE: "fixture_param_names" must be manually set by the # benchmark author/user using the "request" fixture! (see below) # # @pytest.fixture(params=[1,2,3]) # def someFixture(request): # request.keywords["fixture_param_names"] = ["the_param_name"] if hasattr(bench, "fixture_param_names") and \ (bench.fixture_param_names is not None) and \ (paramName in bench.fixture_param_names): fixtureName = paramName paramNames = _ensureListLike(bench.fixture_param_names[fixtureName]) paramValues = _ensureListLike(paramVal) for (pname, pval) in zip(paramNames, paramValues): params[pname] = pval # otherwise, a benchmark/test will have params added to the # bench.params dict as a standard key:value (paramName:paramVal) else: params[paramName] = paramVal bench.stats.mean getattr(bench.stats, "gpu_mem", None) getattr(bench.stats, "gpu_util", None) resultList = [] for statType in ["mean", "gpu_mem", "gpu_util"]: bn = "%s_%s" % (benchName, suffixDict[statType]) val = getattr(bench.stats, statType, None) if val is not None: bResult = BenchmarkResult(funcName=bn, argNameValuePairs=list(params.items()), result=val) bResult.unit = unitsDict[statType] resultList.append(bResult) # If there were any custom metrics, add each of those as well as an # individual result to the same bInfo isntance. for customMetricName in bench.stats.getCustomMetricNames(): (result, unitString) = bench.stats.getCustomMetric(customMetricName) bn = "%s_%s" % (benchName, customMetricName) bResult = BenchmarkResult(funcName=bn, argNameValuePairs=list(params.items()), result=result) bResult.unit = unitString resultList.append(bResult) db.addResults(bInfo, resultList)
from pynvml import smi as nvidia_smi nvidia_smi.nvmlInit() handle = nvidia_smi.nvmlDeviceGetHandleByIndex(0) # card id 0 hardcoded here, there is also a call to get all available card ids, so we could iterate ans = 0 while(True): mem_res = nvidia_smi.nvmlDeviceGetMemoryInfo(handle) # print(mem_res.used / (1024**2)) # usage in GiB if (mem_res.used / (1024**2) > ans): ans = mem_res.used / (1024**2) print(ans) # print(f'mem: {100 * (mem_res.used / mem_res.total):.3f}%') # percentage usage