def __init__(self): super(ADMMSolver, self).__init__(self.register_options()) self.set_options_to_default() # The following attributes will be modified by the # solve() method. For users that are scripting, these # can be accessed after the solve() method returns. # They will be reset each time solve() is called. ############################################ self.objective_history = OrderedDict() self.primal_residual_history = OrderedDict() self.dual_residual_history = OrderedDict() self.iterations = None
def close(self): """Close the manager.""" if len(self.results): print("WARNING: %s is closing with %s local " "results waiting to be processed." % (type(self).__name__, len(self.results))) if len(self._paused_task_dict): print("WARNING: %s is closing with %s paused " "tasks waiting to be queued." % (type(self).__name__, len(self._paused_task_dict))) self.results = OrderedDict() self._paused = False self._paused_task_dict = {} for client in self._dispatcher_name_to_client.values(): # the client will release the dispatcher proxy client.close() self._dispatcher_name_to_client = {} self._dispatcher_proxies = {}
def __init__(self, host=None, port=None, verbose=0): self.host = host self.port = port self._verbose = verbose self._paused = False self._paused_task_dict = {} self._dispatcher_name_to_client = {} self._dispatcher_proxies = {} # map from task id to the corresponding action handle. # we only retain entries for tasks for which we expect # a result/response. self._last_extracted_ah_id = None super(PyroAsynchronousActionManager, self).__init__() # the list of cached results obtained from the dispatch server. # to avoid communication overhead, grab any/all results available, # and then cache them here - but return one-at-a-time via # the standard _perform_wait_any interface. the elements in this # list are simply tasks - at this point, we don't care about the # queue name associated with the task. self.results = OrderedDict()
class SolverManager_Serial(AsynchronousSolverManager): def clear(self): """ Clear manager state """ super(SolverManager_Serial, self).clear() self.results = OrderedDict() def _perform_queue(self, ah, *args, **kwds): """ Perform the queue operation. This method returns the ActionHandle, and the ActionHandle status indicates whether the queue was successful. """ opt = kwds.pop('solver', kwds.pop('opt', None)) if opt is None: raise ActionManagerError( "No solver passed to %s, use keyword option 'solver'" % (type(self).__name__) ) time_start = time.time() if isinstance(opt, string_types): with pyomo.opt.SolverFactory(opt) as _opt: results = _opt.solve(*args, **kwds) else: results = opt.solve(*args, **kwds) results.pyomo_solve_time = time.time()-time_start self.results[ah.id] = results ah.status = ActionStatus.done self.event_handle[ah.id].update(ah) return ah def _perform_wait_any(self): """ Perform the wait_any operation. This method returns an ActionHandle with the results of waiting. If None is returned then the ActionManager assumes that it can call this method again. Note that an ActionHandle can be returned with a dummy value, to indicate an error. """ if len(self.results) > 0: ah_id, result = self.results.popitem(last=False) self.results[ah_id] = result return self.event_handle[ah_id] return ActionHandle(error=True, explanation=("No queued evaluations available in " "the 'serial' solver manager, which " "executes solvers synchronously"))
def _repn_(self, option): if not option.schema and not self._active and not self._required: return ignore if option.schema and len(self) == 0: self.add() self.add() if option.num_solutions is None: num = len(self) else: num = min(option.num_solutions, len(self)) i=0 tmp = [] for item in self._list: tmp.append( item._repn_(option) ) i=i+1 if i == num: break return [OrderedDict([('number of solutions',len(self)), ('number of solutions displayed',num)])]+ tmp
def _process_load(cmd, _model, _data, _default, options=None): #print("LOAD %s" % cmd) from pyomo.core import Set _cmd_len = len(cmd) _options = {} _options['filename'] = cmd[1] i = 2 while cmd[i] != ':': _options[cmd[i]] = cmd[i + 2] i += 3 i += 1 _Index = (None, []) if type(cmd[i]) is tuple: _Index = (None, cmd[i]) i += 1 elif i + 1 < _cmd_len and cmd[i + 1] == '=': _Index = (cmd[i], cmd[i + 2]) i += 3 _smap = OrderedDict() while i < _cmd_len: if i + 2 < _cmd_len and cmd[i + 1] == '=': _smap[cmd[i + 2]] = cmd[i] i += 3 else: _smap[cmd[i]] = cmd[i] i += 1 if len(cmd) < 2: raise IOError("The 'load' command must specify a filename") options = Options(**_options) for key in options: if not key in [ 'range', 'filename', 'format', 'using', 'driver', 'query', 'table', 'user', 'password', 'database' ]: raise ValueError("Unknown load option '%s'" % key) global Filename Filename = options.filename global Lineno Lineno = 0 # # TODO: process mapping info # if options.using is None: tmp = options.filename.split(".")[-1] data = DataManagerFactory(tmp) if (data is None) or \ isinstance(data, UnknownDataManager): raise ApplicationError("Data manager '%s' is not available." % tmp) else: try: data = DataManagerFactory(options.using) except: data = None if (data is None) or \ isinstance(data, UnknownDataManager): raise ApplicationError("Data manager '%s' is not available." % options.using) set_name = None # # Create symbol map # symb_map = _smap if len(symb_map) == 0: raise IOError( "Must specify at least one set or parameter name that will be loaded" ) # # Process index data # _index = None index_name = _Index[0] _select = None # # Set the 'set name' based on the format # _set = None if options.format == 'set' or options.format == 'set_array': if len(_smap) != 1: raise IOError( "A single set name must be specified when using format '%s'" % options.format) set_name = list(_smap.keys())[0] _set = set_name # # Set the 'param name' based on the format # _param = None if options.format == 'transposed_array' or options.format == 'array' or options.format == 'param': if len(_smap) != 1: raise IOError( "A single parameter name must be specified when using format '%s'" % options.format) if options.format in ('transposed_array', 'array', 'param', None): if _Index[0] is None: _index = None else: _index = _Index[0] _param = [] _select = list(_Index[1]) for key in _smap: _param.append(_smap[key]) _select.append(key) if options.format in ('transposed_array', 'array'): _select = None #print "YYY", _param, options if not _param is None and len( _param) == 1 and not _model is None and isinstance( getattr(_model, _param[0]), Set): _select = None _set = _param[0] _param = None _index = None #print "SELECT", _param, _select # data.initialize(model=options.model, filename=options.filename, index=_index, index_name=index_name, param_name=symb_map, set=_set, param=_param, format=options.format, range=options.range, query=options.query, using=options.using, table=options.table, select=_select, user=options.user, password=options.password, database=options.database) # data.open() try: data.read() except Exception: data.close() raise data.close() data.process(_model, _data, _default)
def _process_table(cmd, _model, _data, _default, options=None): #print("TABLE %s" % cmd) # _options = {} _set = OrderedDict() _param = OrderedDict() _labels = [] _cmd = cmd[1] _cmd_len = len(_cmd) name = None i = 0 while i < _cmd_len: try: #print("CMD i=%s cmd=%s" % (i, _cmd[i:])) # # This should not be error prone, so we treat errors # with a general exception # # # Processing labels # if _cmd[i] == ':': i += 1 while i < _cmd_len: _labels.append(_cmd[i]) i += 1 continue # # Processing options # name = _cmd[i] if i + 1 == _cmd_len: _param[name] = [] _labels = ['Z'] i += 1 continue if _cmd[i + 1] == '=': if type(_cmd[i + 2]) is list: _set[name] = _cmd[i + 2] else: _options[name] = _cmd[i + 2] i += 3 continue # This should be a parameter declaration if not type(_cmd[i + 1]) is tuple: raise IOError if i + 2 < _cmd_len and _cmd[i + 2] == '=': _param[name] = (_cmd[i + 1], _cmd[i + 3][0]) i += 4 else: _param[name] = _cmd[i + 1] i += 2 except: raise IOError("Error parsing table options: %s" % name) #print("_options %s" % _options) #print("_set %s" % _set) #print("_param %s" % _param) #print("_labels %s" % _labels) # options = Options(**_options) for key in options: if not key in ['columns']: raise ValueError("Unknown table option '%s'" % key) # ncolumns = options.columns if ncolumns is None: ncolumns = len(_labels) if ncolumns == 0: if not (len(_set) == 1 and len(_set[_set.keys()[0]]) == 0): raise IOError( "Must specify either the 'columns' option or column headers" ) else: ncolumns = 1 else: ncolumns = int(ncolumns) # data = cmd[2] Ldata = len(cmd[2]) # cmap = {} if len(_labels) == 0: for i in range(ncolumns): cmap[i + 1] = i for label in _param: ndx = cmap[_param[label][1]] if ndx < 0 or ndx >= ncolumns: raise IOError("Bad column value %s for data %s" % (str(ndx), label)) cmap[label] = ndx _param[label] = _param[label][0] else: i = 0 for label in _labels: cmap[label] = i i += 1 #print("CMAP %s" % cmap) # #print("_param %s" % _param) #print("_set %s" % _set) for sname in _set: # Creating set sname cols = _set[sname] tmp = [] for col in cols: if not col in cmap: raise IOError( "Unexpected table column '%s' for index set '%s'" % (col, sname)) tmp.append(cmap[col]) if not sname in cmap: cmap[sname] = tmp cols = list(flatten_tuple(tmp)) # _cmd = ['set', sname, ':='] i = 0 while i < Ldata: row = [] #print("COLS %s NCOLS %d" % (cols, ncolumns)) for col in cols: #print("Y %s %s" % (i, col)) row.append(data[i + col]) if len(row) > 1: _cmd.append(tuple(row)) else: _cmd.append(row[0]) i += ncolumns #print("_data %s" % _data) _process_set(_cmd, _model, _data) # #print("CMAP %s" % cmap) _i = 0 if ncolumns == 0: raise IOError for vname in _param: _i += 1 # create value vname cols = _param[vname] tmp = [] for col in cols: #print("COL %s" % col) if not col in cmap: raise IOError( "Unexpected table column '%s' for table value '%s'" % (col, vname)) tmp.append(cmap[col]) #print("X %s %s" % (len(cols), tmp)) cols = list(flatten_tuple(tmp)) #print("X %s" % len(cols)) #print("VNAME %s %s" % (vname, cmap[vname])) if vname in cmap: cols.append(cmap[vname]) else: cols.append(ncolumns - 1 - (len(_param) - _i)) #print("X %s" % len(cols)) # _cmd = ['param', vname, ':='] i = 0 while i < Ldata: #print("HERE %s %s %s" % (i, cols, ncolumns)) for col in cols: _cmd.append(data[i + col]) i += ncolumns #print("HERE %s" % _cmd) #print("_data %s" % _data) _process_param(_cmd, _model, _data, None, ncolumns=len(cols))
def clear(self): """ Clear manager state """ super(SolverManager_Serial, self).clear() self.results = OrderedDict()
def Reference(reference, ctype=_NotSpecified): """Creates a component that references other components ``Reference`` generates a *reference component*; that is, an indexed component that does not contain data, but instead references data stored in other components as defined by a component slice. The ctype parameter sets the :py:meth:`Component.type` of the resulting indexed component. If the ctype parameter is not set and all data identified by the slice (at construction time) share a common :py:meth:`Component.type`, then that type is assumed. If either the ctype parameter is ``None`` or the data has more than one ctype, the resulting indexed component will have a ctype of :py:class:`IndexedComponent`. If the indices associated with wildcards in the component slice all refer to the same :py:class:`Set` objects for all data identifed by the slice, then the resulting indexed component will be indexed by the product of those sets. However, if all data do not share common set objects, or only a subset of indices in a multidimentional set appear as wildcards, then the resulting indexed component will be indexed by a :py:class:`SetOf` containing a :py:class:`_ReferenceSet` for the slice. Parameters ---------- reference : :py:class:`IndexedComponent_slice` component slice that defines the data to include in the Reference component ctype : :py:class:`type` [optional] the type used to create the resulting indexed component. If not specified, the data's ctype will be used (if all data share a common ctype). If multiple data ctypes are found or type is ``None``, then :py:class:`IndexedComponent` will be used. Examples -------- .. doctest:: >>> from pyomo.environ import * >>> m = ConcreteModel() >>> @m.Block([1,2],[3,4]) ... def b(b,i,j): ... b.x = Var(bounds=(i,j)) ... >>> m.r1 = Reference(m.b[:,:].x) >>> m.r1.pprint() r1 : Size=4, Index=r1_index, ReferenceTo=b[:, :].x Key : Lower : Value : Upper : Fixed : Stale : Domain (1, 3) : 1 : None : 3 : False : True : Reals (1, 4) : 1 : None : 4 : False : True : Reals (2, 3) : 2 : None : 3 : False : True : Reals (2, 4) : 2 : None : 4 : False : True : Reals Reference components may also refer to subsets of the original data: .. doctest:: >>> m.r2 = Reference(m.b[:,3].x) >>> m.r2.pprint() r2 : Size=2, Index=b_index_0, ReferenceTo=b[:, 3].x Key : Lower : Value : Upper : Fixed : Stale : Domain 1 : 1 : None : 3 : False : True : Reals 2 : 2 : None : 3 : False : True : Reals Reference components may have wildcards at multiple levels of the model hierarchy: .. doctest:: >>> m = ConcreteModel() >>> @m.Block([1,2]) ... def b(b,i): ... b.x = Var([3,4], bounds=(i,None)) ... >>> m.r3 = Reference(m.b[:].x[:]) >>> m.r3.pprint() r3 : Size=4, Index=r3_index, ReferenceTo=b[:].x[:] Key : Lower : Value : Upper : Fixed : Stale : Domain (1, 3) : 1 : None : None : False : True : Reals (1, 4) : 1 : None : None : False : True : Reals (2, 3) : 2 : None : None : False : True : Reals (2, 4) : 2 : None : None : False : True : Reals The resulting reference component may be used just like any other component. Changes to the stored data will be reflected in the original objects: .. doctest:: >>> m.r3[1,4] = 10 >>> m.b[1].x.pprint() x : Size=2, Index=b[1].x_index Key : Lower : Value : Upper : Fixed : Stale : Domain 3 : 1 : None : None : False : True : Reals 4 : 1 : 10 : None : False : False : Reals """ referent = reference if isinstance(reference, IndexedComponent_slice): _data = _ReferenceDict(reference) _iter = iter(reference) slice_idx = [] index = None elif isinstance(reference, Component): reference = reference[...] _data = _ReferenceDict(reference) _iter = iter(reference) slice_idx = [] index = None elif isinstance(reference, ComponentData): # Create a dummy IndexedComponent container with a "normal" # Scalar interface. This relies on the assumption that the # Component uses a standard storage model. _idx = next(iter(UnindexedComponent_set)) _parent = reference.parent_component() comp = _parent.__class__(SetOf(UnindexedComponent_set)) comp.construct() comp._data[_idx] = reference # # HACK: Set the _parent to match the ComponentData's container's # parent so that block.clone() infers the correct block scope # for this "hidden" component # # TODO: When Block supports proper "hidden" / "anonymous" # components, switch this HACK over to that API comp._parent = _parent._parent # reference = comp[...] _data = _ReferenceDict(reference) _iter = iter(reference) slice_idx = [] index = None elif isinstance(reference, Mapping): _data = _ReferenceDict_mapping(dict(reference)) _iter = _data.values() slice_idx = None index = SetOf(_data) elif isinstance(reference, Sequence): _data = _ReferenceDict_mapping(OrderedDict(enumerate(reference))) _iter = _data.values() slice_idx = None index = OrderedSetOf(_data) else: raise TypeError( "First argument to Reference constructors must be a " "component, component slice, Sequence, or Mapping (received %s)" % (type(reference).__name__, )) if ctype is _NotSpecified: ctypes = set() else: # If the caller specified a ctype, then we will prepopulate the # list to improve our chances of avoiding a scan of the entire # Reference (by simulating multiple ctypes having been found, we # can break out as soon as we know that there are not common # subsets). ctypes = set((1, 2)) for obj in _iter: ctypes.add(obj.ctype) if not isinstance(obj, ComponentData): # This object is not a ComponentData (likely it is a pure # IndexedComponent container). As the Reference will treat # it as if it *were* a ComponentData, we will skip ctype # identification and return a base IndexedComponent, thereby # preventing strange exceptions in the writers and with # things like pprint(). Of course, all of this logic is # skipped if the User knows better and forced a ctype on us. ctypes.add(0) # Note that we want to walk the entire slice, unless we can # prove that BOTH there aren't common indexing sets (i.e., index # is None) AND there is more than one ctype. if slice_idx is not None: # As long as we haven't ruled out the possibility of common # wildcard sets, then we will use _identify_wildcard_sets to # identify the wilcards for this obj and check compatibility # of the wildcards with any previously-identified wildcards. slice_idx = _identify_wildcard_sets(_iter._iter_stack, slice_idx) elif len(ctypes) > 1: break if index is None: if not slice_idx: index = SetOf(_ReferenceSet(reference)) else: wildcards = sum((sorted(lvl.items()) for lvl in slice_idx if lvl is not None), []) # Wildcards is a list of (coordinate, set) tuples. Coordinate # is that within the subsets list, and set is a wildcard set. index = wildcards[0][1] # index is the first wildcard set. if not isinstance(index, _SetDataBase): index = SetOf(index) for lvl, idx in wildcards[1:]: if not isinstance(idx, _SetDataBase): idx = SetOf(idx) index = index * idx # index is now either a single Set, or a SetProduct of the # wildcard sets. if ctype is _NotSpecified: if len(ctypes) == 1: ctype = ctypes.pop() else: ctype = IndexedComponent elif ctype is None: ctype = IndexedComponent obj = ctype(index, ctype=ctype) obj._constructed = True obj._data = _data obj.referent = referent return obj
def clear(self): """ Clear manager state """ super(PyroAsynchronousActionManager, self).clear() self.results = OrderedDict()
class PyroAsynchronousActionManager(AsynchronousActionManager): def __init__(self, host=None, port=None, verbose=0): self.host = host self.port = port self._verbose = verbose self._paused = False self._paused_task_dict = {} self._dispatcher_name_to_client = {} self._dispatcher_proxies = {} # map from task id to the corresponding action handle. # we only retain entries for tasks for which we expect # a result/response. self._last_extracted_ah_id = None super(PyroAsynchronousActionManager, self).__init__() # the list of cached results obtained from the dispatch server. # to avoid communication overhead, grab any/all results available, # and then cache them here - but return one-at-a-time via # the standard _perform_wait_any interface. the elements in this # list are simply tasks - at this point, we don't care about the # queue name associated with the task. self.results = OrderedDict() def clear(self): """ Clear manager state """ super(PyroAsynchronousActionManager, self).clear() self.results = OrderedDict() def close(self): """Close the manager.""" if len(self.results): print("WARNING: %s is closing with %s local " "results waiting to be processed." % (type(self).__name__, len(self.results))) if len(self._paused_task_dict): print("WARNING: %s is closing with %s paused " "tasks waiting to be queued." % (type(self).__name__, len(self._paused_task_dict))) self.results = OrderedDict() self._paused = False self._paused_task_dict = {} for client in self._dispatcher_name_to_client.values(): # the client will release the dispatcher proxy client.close() self._dispatcher_name_to_client = {} self._dispatcher_proxies = {} def pause(self): self._paused = True def unpause(self): self._paused = False if len(self._paused_task_dict): for dispatcher_name in self._paused_task_dict: client = self._dispatcher_name_to_client[dispatcher_name] client.add_tasks(self._paused_task_dict[dispatcher_name], verbose=self._verbose > 1) self._paused_task_dict = {} def get_results(self, ah): return self.results.pop(ah.id, None) def wait_all(self, *args): """ Wait for all actions to complete. The arguments to this method are expected to be ActionHandle objects or iterators that return ActionHandle objects. If no arguments are provided, then this method will terminate after all queued actions are complete. """ # Collect event handlers from the arguments ahs = self._flatten(*args) if len(ahs): while len(ahs) > 0: ahs.difference_update( [ah for ah in ahs if ah.id in self.results]) if len(ahs): self._download_results() else: while self.queued_action_counter > 0: self._download_results() def wait_any(self, *args): # Collect event handlers from the arguments ahs = self._flatten(*args) if len(ahs): while (1): for ah in ahs: if ah.id in self.results: return ah self._download_results() else: while len(self.results) == 0: self._download_results() ah_id, result = self.results.popitem(last=False) if ah_id == self._last_extracted_ah_id: self._last_extracted_ah_id = ah_id self._download_results() self.results[ah_id] = result ah_id, result = self.results.popitem(last=False) self.results[ah_id] = result return self.event_handle[ah_id] def wait_for(self, ah): """ Wait for the specified action to complete. """ while (1): if ah.id in self.results: break else: self._download_results() return self.get_results(ah) def _create_client(self, dispatcher=None): if dispatcher is None: client = pyu_pyro.Client(host=self.host, port=self.port) else: client = pyu_pyro.Client(dispatcher=dispatcher) if client.URI in self._dispatcher_name_to_client: self._dispatcher_name_to_client[client.URI].close() self._dispatcher_name_to_client[client.URI] = client return client # # Perform the queue operation. This method returns the # ActionHandle, and the ActionHandle status indicates whether # the queue was successful. # def _perform_queue(self, ah, *args, **kwds): queue_name = kwds.pop('queue_name', None) generate_response = kwds.pop('generate_response', True) dispatcher_name = self._get_dispatcher_name(queue_name) task_data = self._get_task_data(ah, *args, **kwds) task = pyu_pyro.Task(data=task_data, id=ah.id, generateResponse=generate_response) if self._paused: if dispatcher_name not in self._paused_task_dict: self._paused_task_dict[dispatcher_name] = dict() if queue_name not in self._paused_task_dict[dispatcher_name]: self._paused_task_dict[dispatcher_name][queue_name] = [] self._paused_task_dict[dispatcher_name][queue_name].append(task) else: client = self._dispatcher_name_to_client[dispatcher_name] client.add_task(task, verbose=self._verbose > 1, override_type=queue_name) # only populate the action_handle-to-task dictionary is a # response is expected. if not generate_response: ah.status = ActionStatus.done self.event_handle[ah.id].update(ah) self.queued_action_counter -= 1 return ah # # Abstract Methods # def _get_dispatcher_name(self, queue_name): raise NotImplementedError( type(self).__name__ + ": This method is abstract") def _get_task_data(self, ah, **kwds): raise NotImplementedError( type(self).__name__ + ": This method is abstract") def _download_results(self): raise NotImplementedError( type(self).__name__ + ": This method is abstract")
def _solve_impl(self, sp, rho=1.0, y_init=0.0, z_init=0.0, output_solver_log=False): if len(sp.scenario_tree.stages) > 2: raise ValueError("ADMM solver does not yet handle more " "than 2 time-stages") start_time = time.time() scenario_tree = sp.scenario_tree num_scenarios = len(scenario_tree.scenarios) num_stages = len(scenario_tree.stages) num_na_nodes = 0 num_na_variables = 0 num_na_continuous_variables = 0 num_na_binary_variables = 0 num_na_integer_variables = 0 for stage in sp.scenario_tree.stages[:-1]: for tree_node in stage.nodes: num_na_nodes += 1 num_na_variables += len(tree_node._standard_variable_ids) for id_ in tree_node._standard_variable_ids: if tree_node.is_variable_binary(id_): num_na_binary_variables += 1 elif tree_node.is_variable_integer(id_): num_na_integer_variables += 1 else: num_na_continuous_variables += 1 # print("-"*20) # print("Problem Statistics".center(20)) # print("-"*20) # print("Total number of scenarios.................: %10s" # % (num_scenarios)) # print("Total number of time stages...............: %10s" # % (num_stages)) # print("Total number of non-anticipative nodes....: %10s" # % (num_na_nodes)) # print("Total number of non-anticipative variables: %10s\n#" # " continuous: %10s\n#" # " binary: %10s\n#" # " integer: %10s" # % (num_na_variables, # num_na_continuous_variables, # num_na_binary_variables, # num_na_integer_variables)) rel_tol_primal = \ self.get_option("primal_residual_relative_tolerance") rel_tol_dual = \ self.get_option("dual_residual_relative_tolerance") max_iterations = \ self.get_option("max_iterations") self.objective_history = OrderedDict() self.primal_residual_history = OrderedDict() self.dual_residual_history = OrderedDict() self.iterations = 0 if output_solver_log: print("") label_cols = ("{0:^4} {1:>16} {2:>8} {3:>8} {4:>12}".format( "iter", "objective", "pr_res", "du_res", "lg(||rho||)")) with ADMMAlgorithm(sp, self._options) as admm: rho, x, y, z = admm.initialize_algorithm_data(rho_init=rho, y_init=y_init, z_init=z_init) rho_strategy = RhoStrategyFactory(self.get_option("rho_strategy"), self._options) rho_strategy.initialize(sp, x, y, z, rho) for i in xrange(max_iterations): objective = \ admm.run_x_update(x, y, z, rho) (unscaled_primal_residual, unscaled_dual_residual, x_scale, z_scale) = \ admm.run_z_update(x, y, z, rho) y_scale = \ admm.run_y_update(x, y, z, rho) # we've completed another iteration self.iterations += 1 # check for convergence primal_rel_scale = max(1.0, x_scale, z_scale) dual_rel_scale = max(1.0, y_scale) primal_residual = unscaled_primal_residual / \ math.sqrt(num_scenarios) / \ primal_rel_scale dual_residual = unscaled_dual_residual / \ math.sqrt(num_na_variables) / \ dual_rel_scale self.objective_history[i] = \ objective self.primal_residual_history[i] = \ primal_residual self.dual_residual_history[i] = \ dual_residual if output_solver_log: if (i % 10) == 0: print(label_cols) print("%4d %16.7e %8.2e %8.2e %12.2e" % (i, objective, primal_residual, dual_residual, math.log(admm.compute_nodevector_norm(rho)))) if (primal_residual < rel_tol_primal) and \ (dual_residual < rel_tol_dual): if output_solver_log: print("\nNumber of Iterations....: %s" % (self.iterations)) break else: rho_strategy.update_rho(sp, x, y, z, rho) else: if output_solver_log: print("\nMaximum number of iterations reached: %s" % (max_iterations)) if output_solver_log: print("") print(" {0:^24} {1:^24}".\ format("(scaled)", "(unscaled)")) print("Objective..........: {0:^24} {1:^24.16e}".\ format("-", objective)) print("Primal residual....: {0:^24.16e} {1:^24.16e}".\ format(primal_residual, unscaled_primal_residual)) print("Dual residual......: {0:^24.16e} {1:^24.16e}".\ format(dual_residual, unscaled_dual_residual)) unscaled_err = unscaled_primal_residual + \ unscaled_dual_residual err = primal_residual + dual_residual print("Overall error......: {0:^24.16e} {1:^24.16e}".\ format(err, unscaled_err)) results = SPSolverResults() results.objective = objective results.xhat = z return results