Exemple #1
0
 def test_solve1(self):
     model = ConcreteModel()
     model.A = RangeSet(1,4)
     model.x = Var(model.A, bounds=(-1,1))
     def obj_rule(model):
         return sum_product(model.x)
     model.obj = Objective(rule=obj_rule)
     def c_rule(model):
         expr = 0
         for i in model.A:
             expr += i*model.x[i]
         return expr == 0
     model.c = Constraint(rule=c_rule)
     opt = SolverFactory('glpk')
     results = opt.solve(model, symbolic_solver_labels=True)
     model.solutions.store_to(results)
     results.write(filename=join(currdir,"solve1.out"), format='json')
     self.assertMatchesJsonBaseline(
         join(currdir,"solve1.out"), join(currdir,"solve1.txt"),
         tolerance=1e-4)
     #
     def d_rule(model):
         return model.x[1] >= 0
     model.d = Constraint(rule=d_rule)
     model.d.deactivate()
     results = opt.solve(model)
     model.solutions.store_to(results)
     results.write(filename=join(currdir,"solve1x.out"), format='json')
     self.assertMatchesJsonBaseline(
         join(currdir,"solve1x.out"), join(currdir,"solve1.txt"),
         tolerance=1e-4)
     #
     model.d.activate()
     results = opt.solve(model)
     model.solutions.store_to(results)
     results.write(filename=join(currdir,"solve1a.out"), format='json')
     self.assertMatchesJsonBaseline(
         join(currdir,"solve1a.out"), join(currdir,"solve1a.txt"),
         tolerance=1e-4)
     #
     model.d.deactivate()
     def e_rule(model, i):
         return model.x[i] >= 0
     model.e = Constraint(model.A, rule=e_rule)
     for i in model.A:
         model.e[i].deactivate()
     results = opt.solve(model)
     model.solutions.store_to(results)
     results.write(filename=join(currdir,"solve1y.out"), format='json')
     self.assertMatchesJsonBaseline(
         join(currdir,"solve1y.out"), join(currdir,"solve1.txt"),
         tolerance=1e-4)
     #
     model.e.activate()
     results = opt.solve(model)
     model.solutions.store_to(results)
     results.write(filename=join(currdir,"solve1b.out"), format='json')
     self.assertMatchesJsonBaseline(
         join(currdir,"solve1b.out"), join(currdir,"solve1b.txt"),
         tolerance=1e-4)
Exemple #2
0
    def Xtest_sip_example1(self):
        M = examples.sip_example1.create()

        opt = Solver('pao.pyomo.FA')
        opt.solve(M, solver='gurobi')

        self.assertTrue(False)
Exemple #3
0
    def _apply_solver(self):
        start_time = time.time()

        # construct the high-point problem (LL feasible, no LL objective)
        # s0 <- solve the high-point
        # if s0 infeasible then return high_point_infeasible
        xfrm = TransformationFactory('pao.bilevel.highpoint')
        xfrm.apply_to(self._instance)
        #
        # Solve with a specified solver
        #
        solver = self.options.solver
        if not self.options.solver:
            solver = 'ipopt'

        for c in self._instance.component_objects(Block, descend_into=False):
            if '_hp' in c.name:
                c.activate()
                opt = pyomo.opt.SolverFactory(solver)
                results = opt.solve(c)
                _check_termination_condition(results)
                c.deactivate()

        # s1 <- solve the optimistic bilevel (linear/linear) problem (call solver3)
        # if s1 infeasible then return optimistic_infeasible
        opt = BilevelSolver3()
        opt.options.solver = solver
        results = opt.solve(self._instance)
        _check_termination_condition(results)
Exemple #4
0
    def test_solve1(self):
        model = ConcreteModel()
        model.A = RangeSet(1, 4)
        model.x = Var(model.A, bounds=(-1, 1))

        def obj_rule(model):
            return summation(model.x)

        model.obj = Objective(rule=obj_rule)

        def c_rule(model):
            expr = 0
            for i in model.A:
                expr += i * model.x[i]
            return expr == 0

        model.c = Constraint(rule=c_rule)
        opt = solver['glpk']
        results = opt.solve(model, keepfiles=True, symbolic_solver_labels=True)
        model.solutions.store_to(results)
        results.write(filename=currdir + "solve1.out", format='json')
        self.assertMatchesJsonBaseline(currdir + "solve1.out",
                                       currdir + "solve1.txt",
                                       tolerance=1e-4)

        #
        def d_rule(model):
            return model.x[1] >= 0

        model.d = Constraint(rule=d_rule)
        model.d.deactivate()
        results = opt.solve(model, keepfiles=True)
        model.solutions.store_to(results)
        results.write(filename=currdir + "solve1x.out", format='json')
        self.assertMatchesJsonBaseline(currdir + "solve1x.out",
                                       currdir + "solve1.txt",
                                       tolerance=1e-4)
        #
        model.d.activate()
        results = opt.solve(model, keepfiles=True)
        model.solutions.store_to(results)
        results.write(filename=currdir + "solve1a.out", format='json')
        self.assertMatchesJsonBaseline(currdir + "solve1a.out",
                                       currdir + "solve1a.txt",
                                       tolerance=1e-4)
        #
        model.d.deactivate()

        def e_rule(model, i):
            return model.x[i] >= 0

        model.e = Constraint(model.A, rule=e_rule)
        for i in model.A:
            model.e[i].deactivate()
        results = opt.solve(model, keepfiles=True)
        model.solutions.store_to(results)
        results.write(filename=currdir + "solve1b.out", format='json')
        self.assertMatchesJsonBaseline(currdir + "solve1b.out",
                                       currdir + "solve1b.txt",
                                       tolerance=1e-4)
Exemple #5
0
    def test_pineda(self):
        M = examples.pineda.create()

        opt = Solver('pao.pyomo.FA')
        opt.solve(M)

        self.assertTrue(math.isclose(M.xR.value, 2))
        self.assertTrue(math.isclose(M.L.xR.value, 100))
Exemple #6
0
    def test_besancon27(self):
        M = examples.besancon27.create()

        opt = Solver('pao.pyomo.FA')
        opt.solve(M)

        self.assertTrue(math.isclose(M.x.value, 0))
        self.assertTrue(math.isclose(M.v.value, 1))
Exemple #7
0
 def test_neos_ipopt_available(self):
     M = create_nlp1()
     opt = Solver('ipopt', server='neos', email='*****@*****.**', max_cpu_time=1e-12)
     self.assertTrue(opt.available())
     res = opt.solve(M)
     #M.x.pprint()
     res = opt.solve(M, max_cpu_time=100)
     self.assertTrue(math.isclose(opt.solver_options['max_cpu_time'], 1e-12))
Exemple #8
0
    def test_PCCG(self):
        M = examples.bard511.create()

        opt = Solver('pao.pyomo.PCCG', mip_solver=Solver('cbc'))
        opt.solve(M)

        self.assertTrue(math.isclose(M.x.value, 4))
        self.assertTrue(math.isclose(M.y.value, 4))
Exemple #9
0
    def test_bard511(self):
        M = examples.bard511.create()

        opt = Solver('pao.pyomo.FA')
        opt.solve(M)

        self.assertTrue(math.isclose(M.x.value, 4))
        self.assertTrue(math.isclose(M.y.value, 4))
Exemple #10
0
    def test_toyexample2(self):
        M = examples.toyexample2.create()

        opt = Solver('pao.pyomo.PCCG')
        opt.solve(M)

        self.assertEqual(M.xZ.value, 8)
        self.assertEqual(M.L.xZ.value, 6)
Exemple #11
0
    def test_REG(self):
        M = examples.bard511.create()

        opt = Solver('pao.pyomo.REG', nlp_solver=Solver('ipopt'))
        opt.solve(M)

        self.assertTrue(math.isclose(M.x.value, 4, abs_tol=1e-4))
        self.assertTrue(math.isclose(M.y.value, 4, abs_tol=1e-4))
Exemple #12
0
    def test_pineda(self):
        M = examples.pineda.create()

        opt = Solver('pao.pyomo.PCCG')
        opt.solve(M)

        self.assertTrue(math.isclose(M.xR.value, 2, abs_tol=1e-4))
        self.assertTrue(math.isclose(M.L.xR.value, 100, abs_tol=1e-4))
Exemple #13
0
    def test_getachew_ex2(self):
        M = examples.getachew_ex2.create()

        opt = Solver('pao.pyomo.PCCG')
        opt.solve(M)

        self.assertTrue(math.isclose(M.xR.value, 6, abs_tol=1e-4))
        self.assertTrue(math.isclose(M.L.xR.value, 8, abs_tol=1e-4))
Exemple #14
0
    def test_besancon27(self):
        M = examples.besancon27.create()

        opt = Solver('pao.pyomo.PCCG')
        opt.solve(M)

        self.assertTrue(math.isclose(M.x.value, 0, abs_tol=1e-4))
        self.assertTrue(math.isclose(M.v.value, 1, abs_tol=1e-4))
Exemple #15
0
    def test_getachew_ex2(self):
        M = examples.getachew_ex2.create()

        opt = Solver('pao.pyomo.FA')
        opt.solve(M)

        self.assertTrue(math.isclose(M.xR.value, 6))
        self.assertTrue(math.isclose(M.L.xR.value, 8))
Exemple #16
0
    def test_toyexample3(self):
        M = examples.toyexample3.create()

        opt = Solver('pao.pyomo.PCCG')
        opt.solve(M)

        self.assertTrue(math.isclose(M.xR.value, 3, abs_tol=1e-4))
        self.assertTrue(math.isclose(M.L.xR.value, 0.5, abs_tol=1e-4))
        self.assertEqual(M.xZ.value, 8)
        self.assertEqual(M.L.xZ.value, 0)
Exemple #17
0
 def test_nlp1(self):
     M = create_nlp1()
     opt = Solver('ipopt', tee=True, max_cpu_time=1e-12, print_level=0)
     self.assertTrue(opt.available())
     #opt.config.display()
     #print(opt.solver.options)
     res = opt.solve(M)
     res = opt.solve(M, max_cpu_time=100)
     # Solving with a solver option doesn't change the value configured when creating the solver
     self.assertTrue(math.isclose(opt.solver.options.max_cpu_time, 1e-12))
    def solve(self, alpha, beta, gamma):
        '''solve(self,alpha,beta,gamma):
        Solve the equitable retirement optimization problem. PRECONDITION: All sets and params have been initialized.
        '''
        #rebuild model
        self.__buildModel(alpha, beta, gamma)

        opt = pyomo.opt.SolverFactory('glpk')
        opt.solve(self.model)

        # extract
        self.__extractResults()
    def solve_with_heuristic(self, num_clusters, method='ward', max_time=1800):
        summary = {}
        opt = pyomo.opt.SolverFactory('glpk')
        opt.options['tmlim'] = max_time
        self.cluster = self.make_clusters(num_clusters, method)

        # Creating and solving reduced problem
        reduced_distances = {(i, j): self.calc_dist(x, y)
                             for i, x in self.clusters.iterrows()
                             for j, y in self.clusters.iterrows()}
        reduced_model = self.create_model(reduced_distances, num_clusters)
        results = opt.solve(reduced_model)
        try:
            obj_func = pe.value(reduced_model.obj)
        except ValueError:
            print("Solution for the reduced problem not found")
            return None

        # Creating original problem
        distances = {(i, j): self.calc_dist(x, y)
                     for i, x in self.data.iterrows()
                     for j, y in self.data.iterrows()}
        model = self.create_model(distances, len(self.data) - 1)

        # Fixing clusters relative positions
        for clust_idx in reduced_distances.keys():
            if clust_idx[0] != clust_idx[1] and pe.value(
                    reduced_model.x[clust_idx]) == 0:
                idx1 = self.data[self.data['cluster'] == clust_idx[0]].index
                idx2 = self.data[self.data['cluster'] == clust_idx[1]].index
                fix_idx = [
                    edge for edge in distances.keys()
                    if (edge[0] in idx1) and (edge[1] in idx2)
                ]
                for idx in fix_idx:
                    model.x[idx].fix(0)

        # Solving original problem
        results = opt.solve(model)
        try:
            obj_func = pe.value(model.obj)
        except ValueError:
            print("Solution for Original problem not found")
            return None

        self.solution = []
        for idx in distances.keys():
            if pe.value(model.x[idx]) == 1:
                self.solution.append(idx)

        return obj_func
Exemple #20
0
    def test_barguel(self):
        M = examples.barguel.create()

        opt = Solver('pao.pyomo.FA')
        try:
            opt.solve(M)
            self.fail("Expected an assertion error")
        except AssertionError:
            pass

        opt.solve(M, linearize_bigm=1e6)

        self.assertTrue(math.isclose(M.u.value, 0))
        self.assertTrue(math.isclose(M.x.value, 0))
        self.assertTrue(math.isclose(M.y.value, 0))
Exemple #21
0
 def test_solve7(self):
     #
     # Test that solution values are writen with appropriate quotations in results
     #
     model = ConcreteModel()
     model.y = Var(bounds=(-1,1))
     model.A = RangeSet(1,4)
     model.B = Set(initialize=['A B', 'C,D', 'E'])
     model.x = Var(model.A, model.B, bounds=(-1,1))
     def obj_rule(model):
         return summation(model.x)
     model.obj = Objective(rule=obj_rule)
     def c_rule(model):
         expr = model.y
         for i in model.A:
             for j in model.B:
                 expr += i*model.x[i,j]
         return expr == 0
     model.c = Constraint(rule=c_rule)
     opt = solver['glpk']
     results = opt.solve(model, symbolic_solver_labels=True)
     #model.display()
     model.solutions.store_to(results)
     results.write(filename=currdir+'solve7.out', format='json')
     self.assertMatchesJsonBaseline(currdir+"solve7.out", currdir+"solve7.txt", tolerance=1e-4)
Exemple #22
0
def main(argv):
    parser = argparse.ArgumentParser(
        prog='python -m switch_mod.solve',
        description='Runs the Switch power grid model solver.')
    parser.add_argument(
        '--inputs-dir', type=str, default='inputs',
        help='Directory containing input files (default is "inputs")')
    parser.add_argument(
        '--outputs-dir', type=str, default='outputs',
        help='Directory to write output files (default is "outputs")')
    parser.add_argument(
        '--solver', type=str, default='glpk',
        help='Linear program solver to use (default is "glpk")')
    args = parser.parse_args(argv)

    opt = pyomo.opt.SolverFactory(args.solver)

    module_list = [
        line.rstrip('\n')
        for line in open(os.path.join(args.inputs_dir, 'modules'), 'r')]

    switch_model = switch_mod.utilities.define_AbstractModel(
        'switch_mod', *module_list)
    switch_instance = switch_model.load_inputs(inputs_dir=args.inputs_dir)

    results = opt.solve(switch_instance, keepfiles=False, tee=False)
    switch_instance.load(results)

    results.write()
    switch_instance.pprint()
    switch_model.save_results(results, switch_instance, args.outputs_dir)
Exemple #23
0
    def test_solve6(self):
        #
        # Test that solution values have complete block names:
        #   b.obj
        #   b.x
        #
        model = ConcreteModel()
        model.y = Var(bounds=(-1, 1))
        model.b = Block()
        model.b.A = RangeSet(1, 4)
        model.b.x = Var(model.b.A, bounds=(-1, 1))

        def obj_rule(block):
            return summation(block.x)

        model.b.obj = Objective(rule=obj_rule)

        def c_rule(model):
            expr = model.y
            for i in model.b.A:
                expr += i * model.b.x[i]
            return expr == 0

        model.c = Constraint(rule=c_rule)
        opt = SolverFactory('glpk')
        results = opt.solve(model, symbolic_solver_labels=True)
        model.solutions.store_to(results)
        results.write(filename=join(currdir, 'solve6.out'), format='json')
        self.assertMatchesJsonBaseline(join(currdir, "solve6.out"),
                                       join(currdir, "solve6.txt"),
                                       tolerance=1e-4)
Exemple #24
0
    def test_solve7(self):
        #
        # Test that solution values are writen with appropriate
        # quotations in results
        #
        model = ConcreteModel()
        model.y = Var(bounds=(-1, 1))
        model.A = RangeSet(1, 4)
        model.B = Set(initialize=['A B', 'C,D', 'E'])
        model.x = Var(model.A, model.B, bounds=(-1, 1))

        def obj_rule(model):
            return summation(model.x)

        model.obj = Objective(rule=obj_rule)

        def c_rule(model):
            expr = model.y
            for i in model.A:
                for j in model.B:
                    expr += i * model.x[i, j]
            return expr == 0

        model.c = Constraint(rule=c_rule)
        opt = SolverFactory('glpk')
        results = opt.solve(model, symbolic_solver_labels=True)
        #model.display()
        model.solutions.store_to(results)
        results.write(filename=join(currdir, 'solve7.out'), format='json')
        self.assertMatchesJsonBaseline(join(currdir, "solve7.out"),
                                       join(currdir, "solve7.txt"),
                                       tolerance=1e-4)
Exemple #25
0
    def test_solve_with_pickle_then_clone(self):
        # This tests github issue Pyomo-#65
        model = ConcreteModel()
        model.A = RangeSet(1,4)
        model.b = Block()
        model.b.x = Var(model.A, bounds=(-1,1))
        model.b.obj = Objective(expr=sum_product(model.b.x))
        model.c = Constraint(expr=model.b.x[1] >= 0)
        opt = SolverFactory('glpk')
        self.assertEqual(len(model.solutions), 0)
        results = opt.solve(model, symbolic_solver_labels=True)
        self.assertEqual(len(model.solutions), 1)
        #
        self.assertEqual(model.solutions[0].gap, 0.0)
        #self.assertEqual(model.solutions[0].status, SolutionStatus.feasible)
        self.assertEqual(model.solutions[0].message, None)
        #
        buf = pickle.dumps(model)
        tmodel = pickle.loads(buf)
        self.assertEqual(len(tmodel.solutions), 1)
        self.assertEqual(tmodel.solutions[0].gap, 0.0)
        #self.assertEqual(tmodel.solutions[0].status, SolutionStatus.feasible)
        self.assertEqual(tmodel.solutions[0].message, None)
        self.assertIn(id(tmodel.b.obj), tmodel.solutions[0]._entry['objective'])
        self.assertIs(
            tmodel.b.obj,
            tmodel.solutions[0]._entry['objective'][id(tmodel.b.obj)][0]() )

        inst = tmodel.clone()

        # make sure the clone has all the attributes
        self.assertTrue(hasattr(inst,'A'))
        self.assertTrue(hasattr(inst,'b'))
        self.assertTrue(hasattr(inst.b,'x'))
        self.assertTrue(hasattr(inst.b,'obj'))
        self.assertTrue(hasattr(inst,'c'))
        # and that they were all copied
        self.assertIsNot(inst.A, tmodel.A)
        self.assertIsNot(inst.b, tmodel.b)
        self.assertIsNot(inst.b.x, tmodel.b.x)
        self.assertIsNot(inst.b.obj, tmodel.b.obj)
        self.assertIsNot(inst.c, tmodel.c)

        # Make sure the solution is on the new model
        self.assertTrue(hasattr(inst,'solutions'))
        self.assertEqual(len(inst.solutions), 1)
        self.assertEqual(inst.solutions[0].gap, 0.0)
        #self.assertEqual(inst.solutions[0].status, SolutionStatus.feasible)
        self.assertEqual(inst.solutions[0].message, None)

        # Spot-check some components and make sure all the weakrefs in
        # the ModelSOlution got updated
        self.assertIn(id(inst.b.obj), inst.solutions[0]._entry['objective'])
        _obj = inst.solutions[0]._entry['objective'][id(inst.b.obj)]
        self.assertIs(_obj[0](), inst.b.obj)

        for v in [1,2,3,4]:
            self.assertIn(id(inst.b.x[v]), inst.solutions[0]._entry['variable'])
            _v = inst.solutions[0]._entry['variable'][id(inst.b.x[v])]
            self.assertIs(_v[0](), inst.b.x[v])
Exemple #26
0
 def test_neos_foobar(self):
     M = create_lp1()
     opt = Solver('foobar', server='neos')
     try:
         res = opt.solve(M)
     except RuntimeError:
         pass
    def testMethod(obj):

        if not testing_solvers[solver, writer]:
            obj.skipTest("Solver %s (interface=%s) is not available"
                         % (solver, writer))

        m = pyutilib.misc.import_file(os.path.join(thisDir,
                                                   'problems',
                                                   problem),
                                      clear_cache=True)

        model = m.define_model(**kwds)

        opt = pyomo.opt.SolverFactory(solver,solver_io=writer)
        results = opt.solve(model)

        # non-recursive
        new_results = ((var.name, var.value)
                       for var in model.component_data_objects(Var,
                                                               active=True,
                                                               descend_into=False))
        baseline_results = getattr(obj,problem+'_results')
        for name, value in new_results:
            if abs(baseline_results[name]-value) > 0.00001:
                raise IOError("Difference in baseline solution values and "
                              "current solution values using:\n" + \
                "Solver: "+solver+"\n" + \
                "Writer: "+writer+"\n" + \
                "Variable: "+name+"\n" + \
                "Solution: "+str(value)+"\n" + \
                "Baseline: "+str(baseline_results[name])+"\n")
Exemple #28
0
def main(argv):
    parser = argparse.ArgumentParser(
        prog='python -m switch_mod.solve',
        description='Runs the Switch power grid model solver.')
    parser.add_argument(
        '--inputs-dir', type=str, default='inputs',
        help='Directory containing input files (default is "inputs")')
    parser.add_argument(
        '--outputs-dir', type=str, default='outputs',
        help='Directory to write output files (default is "outputs")')
    parser.add_argument(
        '--solver', type=str, default='glpk',
        help='Linear program solver to use (default is "glpk")')
    parser.add_argument(
        '--verbose', '-v', default=False, action='store_true',
        help='Dump data about internal workings to stdout')
    args = parser.parse_args(argv)

    (switch_model, switch_instance) = load(args.inputs_dir)
    opt = pyomo.opt.SolverFactory(args.solver)
    results = opt.solve(switch_instance, keepfiles=False, tee=False)
    switch_model.save_results(results, switch_instance, args.outputs_dir)

    if args.verbose:
        # Print a dump of the results and model instance to standard output.
        results.write()
        switch_instance.pprint()
Exemple #29
0
    def _perform_queue(self, ah, *args, **kwds):
        """
        Perform the queue operation.  This method returns the ActionHandle,
        and the ActionHandle status indicates whether the queue was successful.
        """

        opt = kwds.pop('solver', kwds.pop('opt', None))
        if opt is None:
            raise ActionManagerError(
                "No solver passed to %s, use keyword option 'solver'"
                % (type(self).__name__) )

        time_start = time.time()
        if isinstance(opt, string_types):
            with pyomo.opt.SolverFactory(opt) as _opt:
                results = _opt.solve(*args, **kwds)
        else:
            results = opt.solve(*args, **kwds)
        results.pyomo_solve_time = time.time()-time_start

        self.results[ah.id] = results
        ah.status = ActionStatus.done
        self.event_handle[ah.id].update(ah)

        return ah
Exemple #30
0
    def testMethod(obj):

        if not testing_solvers[solver, writer]:
            obj.skipTest("Solver %s (interface=%s) is not available"
                         % (solver, writer))

        m = import_file(os.path.join(thisDir, 'problems', problem + '.py'),
                        clear_cache=True)

        model = m.define_model(**kwds)

        opt = pyomo.opt.SolverFactory(solver,solver_io=writer)
        results = opt.solve(model)

        # non-recursive
        new_results = ((var.name, var.value)
                       for var in model.component_data_objects(Var,
                                                               active=True,
                                                               descend_into=False))
        baseline_results = getattr(obj,problem+'_results')
        for name, value in new_results:
            if abs(baseline_results[name]-value) > 0.00001:
                raise IOError("Difference in baseline solution values and "
                              "current solution values using:\n" + \
                "Solver: "+solver+"\n" + \
                "Writer: "+writer+"\n" + \
                "Variable: "+name+"\n" + \
                "Solution: "+str(value)+"\n" + \
                "Baseline: "+str(baseline_results[name])+"\n")
Exemple #31
0
def linprog(f, A, b, Aeq=None, beq=None):
    # Dimensions of matrices
    m1 = b.shape[0]
    n = f.shape[0]

    # b must be a vector
    if b.ndim != 1:
        raise ValueError('b must be a one dimensional array')
    # A must be a matrix
    if A.ndim != 2:
        raise ValueError('A must be a two dimensional array')

    # Dimension check for inequality constraint
    if A.shape != (m1, n):
        raise ValueError(
            'The shape of A must be equal to (b.shape[0], f.shape[0])')

    # If no equality restriction
    if np.any(Aeq == None) & np.any(beq == None):
        Aeq = np.zeros((1, n))
        beq = np.zeros((1, ))
        m2 = 1
    elif (np.any(Aeq != None) & np.any(beq == None)) | (np.any(Aeq == None)
                                                        & np.any(beq != None)):
        raise ValueError(
            'Please provide Aeq and beq if there is an equality constraint. If there is not, please provide none of them.'
        )
    else:
        # Dimension of matrices
        m2 = beq.shape[0]

        # beq must be a vector
        if beq.ndim != 1:
            raise ValueError('b must be a one dimensional array')
        # Aeq must be a matrix
        if Aeq.ndim != 2:
            raise ValueError('A must be a two dimensional array')
        # Dimension check for equality constraint
        if Aeq.shape != (m2, n):
            raise ValueError(
                'The shape of Aeq must be equal to (beq.shape[0], f.shape[0])')

    # Data file creation
    dat_write_lin(f, A, b, Aeq, beq)

    # Solution
    model = linprog_model()
    # Create the model instance
    instance = model.create_instance('default.dat')
    # Setup the optimizer: linear in this case
    import pyomo.environ
    opt = pyomo.opt.SolverFactory('glpk')
    # Optimize
    results = opt.solve(instance)
    # Write the output
    results.write()

    # Optimal solution
    x = np.array([instance.x[k].value for k in instance.K])
    return x, pyomo.environ.value(instance.OBJ)
Exemple #32
0
 def test_solve_with_store2(self):
     model = ConcreteModel()
     model.A = RangeSet(1,4)
     model.b = Block()
     model.b.x = Var(model.A, bounds=(-1,1))
     model.b.obj = Objective(expr=summation(model.b.x))
     model.c = Constraint(expr=model.b.x[1] >= 0)
     opt = solver['glpk']
     results = opt.solve(model)
     #
     results.write(filename=currdir+'solve_with_store3.out', format='json')
     self.assertMatchesYamlBaseline(currdir+"solve_with_store3.out", currdir+"solve_with_store3.txt")
     #
     model.solutions.store_to(results)
     results.write(filename=currdir+'solve_with_store4.out', format='json')
     self.assertMatchesYamlBaseline(currdir+"solve_with_store4.out", currdir+"solve_with_store4.txt")
     #
     # Test that we can pickle the results object
     #
     buf = pickle.dumps(results)
     results_ = pickle.loads(buf)
     results.write(filename=currdir+'solve_with_store4.out', format='json')
     self.assertMatchesYamlBaseline(currdir+"solve_with_store4.out", currdir+"solve_with_store4.txt")
     #
     # Load results with string indices
     #
     tmodel = ConcreteModel()
     tmodel.A = RangeSet(1,3)
     tmodel.b = Block()
     tmodel.b.x = Var(tmodel.A, bounds=(-1,1))
     tmodel.b.obj = Objective(expr=summation(tmodel.b.x))
     tmodel.c = Constraint(expr=tmodel.b.x[1] >= 0)
     self.assertEqual(len(tmodel.solutions), 0)
     tmodel.solutions.load_from(results, ignore_invalid_labels=True)
     self.assertEqual(len(tmodel.solutions), 1)
Exemple #33
0
 def test_solve_with_store2(self):
     # Without symbolic solver labels
     model = ConcreteModel()
     model.A = RangeSet(1,4)
     model.b = Block()
     model.b.x = Var(model.A, bounds=(-1,1))
     model.b.obj = Objective(expr=summation(model.b.x))
     model.c = Constraint(expr=model.b.x[1] >= 0)
     opt = solver['glpk']
     results = opt.solve(model, symbolic_solver_labels=False)
     #
     results.write(filename=currdir+'solve_with_store1.out', format='yaml')
     self.assertMatchesYamlBaseline(currdir+"solve_with_store1.out", currdir+"solve_with_store1.txt")
     model.solutions.store_to(results)
     #
     results.write(filename=currdir+'solve_with_store2.out', format='yaml')
     self.assertMatchesYamlBaseline(currdir+"solve_with_store2.out", currdir+"solve_with_store2.txt")
     #
     # Load results with string indices
     #
     tmodel = ConcreteModel()
     tmodel.A = RangeSet(1,4)
     tmodel.b = Block()
     tmodel.b.x = Var(tmodel.A, bounds=(-1,1))
     tmodel.b.obj = Objective(expr=summation(tmodel.b.x))
     tmodel.c = Constraint(expr=tmodel.b.x[1] >= 0)
     self.assertEqual(len(tmodel.solutions), 0)
     tmodel.solutions.load_from(results)
     self.assertEqual(len(tmodel.solutions), 1)
Exemple #34
0
def curve_polyfit(x, y, order, reg_mode=None, reg_coef=None, robust=False):
    # Dimensions of matrices
    n = x.shape[0]
    m = order

    # b must be a vector
    if y.ndim != 1:
        raise ValueError('y must be a one dimensional array')
    # A must be a matrix
    if x.ndim != 1:
        raise ValueError('x must be a one dimensional array')

    # Dimension check for inequality constraint
    if y.shape[0] != n:
        raise ValueError('The shape of y must be equal to the shape of x')

    # Data file creation
    X = np.array([x**j for j in range(m + 1)]).T
    dat_write_fit(X, y)

    # Solution
    model = fit_model(reg_mode, reg_coef, robust, m)
    # Create the model instance
    instance = model.create_instance('default1.dat')
    # Setup the optimizer: linear in this case
    import pyomo.environ
    opt = pyomo.opt.SolverFactory('ipopt')
    # Optimize
    results = opt.solve(instance)
    # Write the output
    results.write()

    # Optimal solution
    b = np.array([instance.b[j].value for j in instance.J])
    return b
    def test_blending(self):
        """ The blending example from the PuLP documentation """
        model = ConcreteModel()

        model.x1 = Var(bounds=(0, None), doc="ChickenPercent")
        model.x2 = Var(bounds=(0, None), doc="BeefPercent")

        model.obj = Objective(expr=0.013 * model.x1 + 0.008 * model.x2,
                              doc="Total Cost of Ingredients per can")

        model.c0 = Constraint(expr=model.x1 + model.x2 == 100.0,
                              doc="Percentage Sum")
        model.c1 = Constraint(expr=0.100 * model.x1 + 0.200 * model.x2 >= 8.0,
                              doc="Protein Requirement")
        model.c2 = Constraint(expr=0.080 * model.x1 + 0.100 * model.x2 >= 6.0,
                              doc="Fat Requirement")
        model.c3 = Constraint(expr=0.001 * model.x1 + 0.005 * model.x2 <= 2.0,
                              doc="Fiber Requirement")
        model.c4 = Constraint(expr=0.002 * model.x1 + 0.005 * model.x2 <= 0.4,
                              doc="Salt Requirement")
        opt = solver['glpk']
        results = opt.solve(model)
        model.solutions.store_to(results)
        results.write(filename=currdir + "blend.out", format='json')
        self.assertMatchesJsonBaseline(currdir + "blend.out",
                                       currdir + "blend.txt",
                                       tolerance=1e-2)
Exemple #36
0
    def _perform_queue(self, ah, *args, **kwds):
        """
        Perform the queue operation.  This method returns the ActionHandle,
        and the ActionHandle status indicates whether the queue was successful.
        """

        opt = kwds.pop('solver', kwds.pop('opt', None))
        if opt is None:
            raise ActionManagerError(
                "No solver passed to %s, use keyword option 'solver'" %
                (type(self).__name__))

        time_start = time.time()
        if isinstance(opt, str):
            with pyomo.opt.SolverFactory(opt) as _opt:
                results = _opt.solve(*args, **kwds)
        else:
            results = opt.solve(*args, **kwds)
        results.pyomo_solve_time = time.time() - time_start

        self.results[ah.id] = results
        ah.status = ActionStatus.done
        self.event_handle[ah.id].update(ah)

        return ah
Exemple #37
0
 def test_solve_with_store2(self):
     # Without symbolic solver labels
     model = ConcreteModel()
     model.A = RangeSet(1, 4)
     model.b = Block()
     model.b.x = Var(model.A, bounds=(-1, 1))
     model.b.obj = Objective(expr=summation(model.b.x))
     model.c = Constraint(expr=model.b.x[1] >= 0)
     opt = SolverFactory('glpk')
     results = opt.solve(model, symbolic_solver_labels=False)
     #
     results.write(filename=join(currdir, 'solve_with_store1.out'),
                   format='yaml')
     self.assertMatchesYamlBaseline(join(currdir, "solve_with_store1.out"),
                                    join(currdir, "solve_with_store1.txt"))
     model.solutions.store_to(results)
     #
     results.write(filename=join(currdir, 'solve_with_store2.out'),
                   format='yaml')
     self.assertMatchesYamlBaseline(join(currdir, "solve_with_store2.out"),
                                    join(currdir, "solve_with_store2.txt"))
     #
     # Load results with string indices
     #
     tmodel = ConcreteModel()
     tmodel.A = RangeSet(1, 4)
     tmodel.b = Block()
     tmodel.b.x = Var(tmodel.A, bounds=(-1, 1))
     tmodel.b.obj = Objective(expr=summation(tmodel.b.x))
     tmodel.c = Constraint(expr=tmodel.b.x[1] >= 0)
     self.assertEqual(len(tmodel.solutions), 0)
     tmodel.solutions.load_from(results)
     self.assertEqual(len(tmodel.solutions), 1)
Exemple #38
0
 def test_solve_with_store1(self):
     # With symbolic solver labels
     model = ConcreteModel()
     model.A = RangeSet(1,4)
     model.b = Block()
     model.b.x = Var(model.A, bounds=(-1,1))
     model.b.obj = Objective(expr=sum_product(model.b.x))
     model.c = Constraint(expr=model.b.x[1] >= 0)
     opt = SolverFactory('glpk')
     results = opt.solve(model, symbolic_solver_labels=True)
     #
     results.write(filename=join(currdir,'solve_with_store1.out'),
                   format='yaml')
     self.assertMatchesYamlBaseline(
         join(currdir,"solve_with_store1.out"),
         join(currdir,"solve_with_store1.txt"))
     model.solutions.store_to(results)
     #
     results.write(filename=join(currdir,'solve_with_store2.out'),
                   format='yaml')
     self.assertMatchesYamlBaseline(
         join(currdir,"solve_with_store2.out"),
         join(currdir,"solve_with_store2.txt"))
     #
     # Load results with string indices
     #
     tmodel = ConcreteModel()
     tmodel.A = RangeSet(1,4)
     tmodel.b = Block()
     tmodel.b.x = Var(tmodel.A, bounds=(-1,1))
     tmodel.b.obj = Objective(expr=sum_product(tmodel.b.x))
     tmodel.c = Constraint(expr=tmodel.b.x[1] >= 0)
     self.assertEqual(len(tmodel.solutions), 0)
     tmodel.solutions.load_from(results)
     self.assertEqual(len(tmodel.solutions), 1)
def logreg_clas(X, Y):
    # Dimensions of matrices
    m, n = X.shape
    
    # Y must be a vector
    if Y.ndim != 1:
        raise ValueError('Y must be a one dimensional array')
    # Y must have m components
    if Y.shape[0] != m:
        raise ValueError('Y must be have as many components as rows have X')
    
        
    # Data file creation
    Xa = np.append(np.ones((len(Y),1)), X, axis=1)
    dat_write_clas(Xa, Y)
    
    # Solution
    model = clas_model(n)
    # Create the model instance
    instance = model.create_instance('default2.dat')
    # Setup the optimizer: linear in this case
    import pyomo.environ
    opt = pyomo.opt.SolverFactory('ipopt')    
    # Optimize
    results = opt.solve(instance)
    # Write the output
    results.write()
    
    # Optimal solution
    B = np.array([instance.B[j].value for j in instance.J])
    return B
Exemple #40
0
    def _apply_solver(self):
        start_time = time.time()
        #
        # Transform the instance
        #
        xfrm = TransformationFactory('bilevel.linear_mpec')
        xfrm.apply_to(self._instance)
        xfrm = TransformationFactory('mpec.simple_nonlinear')
        xfrm.apply_to(self._instance,
                      mpec_bound=self.options.get('mpec_bound', 1e-7))
        #
        # Solve with a specified solver
        #
        solver = self.options.solver
        if not self.options.solver:
            solver = 'glpk'

        # use the with block here so that deactivation of the
        # solver plugin always occurs thereby avoiding memory
        # leaks caused by plugins!
        with pyomo.opt.SolverFactory(solver) as opt:
            #
            self.results = []
            #
            # **NOTE: It would be better to override _presolve on the
            #         base class of this solver as you might be
            #         missing a number of keywords that were passed
            #         into the solve method (e.g., none of the
            #         io_options are getting relayed to the subsolver
            #         here).
            #
            self.results.append(
                opt.solve(self._instance,
                          tee=self._tee,
                          timelimit=self._timelimit))
        #
        # Load the result back into the original model
        #
        ##self._instance.load(self.results[0], ignore_invalid_labels=True)
        #
        stop_time = time.time()
        self.wall_time = stop_time - start_time
        #
        # Deactivate the block that contains the optimality conditions,
        # and reactivate SubModel
        #
        submodel = self._instance._transformation_data[
            'bilevel.linear_mpec'].submodel_cuid.find_component(self._instance)
        for (name, data) in submodel.component_map(active=False).items():
            if not isinstance(data, Var) and not isinstance(data, Set):
                data.activate()
        # TODO: delete this subblock
        self._instance._transformation_data[
            'bilevel.linear_mpec'].block_cuid.find_component(
                self._instance).deactivate()
        #
        # Return the sub-solver return condition value and log
        #
        return pyutilib.misc.Bunch(rc=getattr(opt, '_rc', None),
                                   log=getattr(opt, '_log', None))
Exemple #41
0
 def test_solve6(self):
     #
     # Test that solution values have complete block names:
     #   b.obj
     #   b.x
     #
     model = ConcreteModel()
     model.y = Var(bounds=(-1,1))
     model.b = Block()
     model.b.A = RangeSet(1,4)
     model.b.x = Var(model.b.A, bounds=(-1,1))
     def obj_rule(block):
         return summation(block.x)
     model.b.obj = Objective(rule=obj_rule)
     def c_rule(model):
         expr = model.y
         for i in model.b.A:
             expr += i*model.b.x[i]
         return expr == 0
     model.c = Constraint(rule=c_rule)
     opt = solver['glpk']
     results = opt.solve(model, symbolic_solver_labels=True)
     model.solutions.store_to(results)
     results.write(filename=currdir+'solve6.out', format='json')
     self.assertMatchesJsonBaseline(currdir+"solve6.out", currdir+"solve6.txt", tolerance=1e-4)
Exemple #42
0
 def test3a_solve(self):
     if not 'glpk' in solvers:
         self.skipTest("glpk solver is not available")
     self.model = pyomo.opt.AmplModel(currdir+'test3a.mod', currdir+'test3a.dat')
     opt = pyomo.opt.SolverFactory('glpk')
     results = opt.solve(self.model, keepfiles=False)
     results.write(filename=currdir+'test3a.out', format='json')
     self.assertMatchesJsonBaseline(currdir+'test3a.out', currdir+'test3.baseline.out', tolerance=1e-6)
Exemple #43
0
 def test3_solve(self):
     if solver['glpk'] is None:
         self.skipTest("glpk solver is not available")
     self.model = pyomo.opt.AmplModel(currdir+'test3.mod')
     opt = solver['glpk']
     results = opt.solve(self.model, keepfiles=False)
     results.write(filename=currdir+'test3.out', format='json')
     self.assertMatchesJsonBaseline(currdir+'test3.out', currdir+'test3.baseline.out', tolerance=1e-6)
Exemple #44
0
 def test3a_solve(self):
     if not "glpk" in solvers:
         self.skipTest("glpk solver is not available")
     self.model = pyomo.opt.AmplModel(currdir + "test3a.mod", currdir + "test3a.dat")
     opt = pyomo.opt.SolverFactory("glpk")
     results = opt.solve(self.model, keepfiles=False)
     results.write(filename=currdir + "test3a.out", format="json")
     self.assertMatchesJsonBaseline(currdir + "test3a.out", currdir + "test3.baseline.out", tolerance=1e-6)
Exemple #45
0
    def _apply_solver(self):
        start_time = time.time()
        #
        # Transform instance
        #
        xfrm = TransformationFactory('mpec.simple_nonlinear')
        xfrm.apply_to(self._instance)
        #
        # Solve with a specified solver
        #
        solver = self.options.solver
        if not self.options.solver:                 #pragma:nocover
            self.options.solver = solver = 'ipopt'

        # use the with block here so that deactivation of the
        # solver plugin always occurs thereby avoiding memory
        # leaks caused by plugins!
        with pyomo.opt.SolverFactory(solver) as opt:
            self.results = []
            epsilon_final = self.options.get('epsilon_final', 1e-7)
            epsilon = self.options.get('epsilon_initial', epsilon_final)
            while (True):
                self._instance.mpec_bound.value = epsilon
                #
                # **NOTE: It would be better to override _presolve on the
                #         base class of this solver as you might be
                #         missing a number of keywords that were passed
                #         into the solve method (e.g., none of the
                #         io_options are getting relayed to the subsolver
                #         here).
                #
                res = opt.solve(self._instance,
                                tee=self._tee,
                                timelimit=self._timelimit)
                self.results.append(res)
                epsilon /= 10.0
                if epsilon < epsilon_final:
                    break
            #
            # Reclassify the Complementarity components
            #
            from pyomo.mpec import Complementarity
            for cuid in self._instance._transformation_data['mpec.simple_nonlinear'].compl_cuids:
                cobj = cuid.find_component(self._instance)
                cobj.parent_block().reclassify_component_type(cobj, Complementarity)
            #
            # Update timing
            #
            stop_time = time.time()
            self.wall_time = stop_time - start_time
            #
            # Return the sub-solver return condition value and log
            #
            return pyutilib.misc.Bunch(rc=getattr(opt,'_rc', None),
                                       log=getattr(opt,'_log',None))
Exemple #46
0
    def _apply_solver(self):
        start_time = time.time()
        #
        # Transform the instance
        #
        xfrm = TransformationFactory('bilevel.linear_mpec')
        xfrm.apply_to(self._instance)
        xfrm = TransformationFactory('mpec.simple_nonlinear')
        xfrm.apply_to(self._instance, mpec_bound=self.options.get('mpec_bound',1e-7))
        #
        # Solve with a specified solver
        #
        solver = self.options.solver
        if not self.options.solver:
            solver = 'glpk'

        # use the with block here so that deactivation of the
        # solver plugin always occurs thereby avoiding memory
        # leaks caused by plugins!
        with pyomo.opt.SolverFactory(solver) as opt:
            #
            self.results = []
            #
            # **NOTE: It would be better to override _presolve on the
            #         base class of this solver as you might be
            #         missing a number of keywords that were passed
            #         into the solve method (e.g., none of the
            #         io_options are getting relayed to the subsolver
            #         here).
            #
            self.results.append(opt.solve(self._instance,
                                          tee=self._tee,
                                          timelimit=self._timelimit))
        #
        # Load the result back into the original model
        #
        ##self._instance.load(self.results[0], ignore_invalid_labels=True)
        #
        stop_time = time.time()
        self.wall_time = stop_time - start_time
        #
        # Deactivate the block that contains the optimality conditions,
        # and reactivate SubModel
        #
        submodel = self._instance._transformation_data['bilevel.linear_mpec'].submodel_cuid.find_component(self._instance)
        for (name, data) in submodel.component_map(active=False).items():
            if not isinstance(data,Var) and not isinstance(data,Set):
                data.activate()
        # TODO: delete this subblock
        self._instance._transformation_data['bilevel.linear_mpec'].block_cuid.find_component(self._instance).deactivate()
        #
        # Return the sub-solver return condition value and log
        #
        return pyutilib.misc.Bunch(rc=getattr(opt,'_rc', None), log=getattr(opt,'_log',None))
Exemple #47
0
    def _apply_solver(self):
        start_time = time.time()
        #
        # Transform instance
        #
        xfrm = TransformationFactory('mpec.simple_disjunction')
        xfrm.apply_to(self._instance)

        xfrm = TransformationFactory('gdp.bigm')
        xfrm.apply_to(self._instance, default_bigM=self.options.get('bigM',10**6))
        #
        # Solve with a specified solver
        #
        solver = self.options.solver
        if not self.options.solver:                     #pragma:nocover
            self.options.solver = solver = 'glpk'

        # use the with block here so that deactivation of the
        # solver plugin always occurs thereby avoiding memory
        # leaks caused by plugins!
        with pyomo.opt.SolverFactory(solver) as opt:
            #
            # **NOTE: It would be better to override _presolve on the
            #         base class of this solver as you might be
            #         missing a number of keywords that were passed
            #         into the solve method (e.g., none of the
            #         io_options are getting relayed to the subsolver
            #         here).
            #
            self.results = opt.solve(self._instance,
                                     tee=self._tee,
                                     timelimit=self._timelimit)
            #
            # Reclassify the Complementarity components
            #
            from pyomo.mpec import Complementarity
            for cuid in self._instance._transformation_data['mpec.simple_disjunction'].compl_cuids:
                cobj = cuid.find_component(self._instance)
                cobj.parent_block().reclassify_component_type(cobj, Complementarity)
            #
            # Transform the result back into the original model
            #
            ##self._instance.solutions.load_from(self.results, ignore_invalid_labels=True)
            #
            # Update timing
            #
            stop_time = time.time()
            self.wall_time = stop_time - start_time

            #
            # Return the sub-solver return condition value and log
            #
            return pyutilib.misc.Bunch(rc=getattr(opt,'_rc', None),
                                       log=getattr(opt,'_log',None))
Exemple #48
0
def OSSolverService():
    import pyomo.opt

    if len(sys.argv) == 1:
        print("OSSolverService -osil <filename> -solver <name>")
        sys.exit(1)

    osilFile = None
    solver = None
    i=1
    while i<len(sys.argv):
        if sys.argv[i] == "-osil":
            i=i+1
            osilFile=sys.argv[i]
        elif sys.argv[i] == "-solver":
            i=i+1
            solver=sys.argv[i]
        i=i+1

    print("osilFile",osilFile,"solver",solver)

    with pyomo.opt.SolverFactory(solver) as opt:
        opt.solve(osilFile, rformat=pyomo.opt.ResultsFormat.osrl)
Exemple #49
0
 def _apply_solver(self):
     start_time = time.time()
     #
     # Cache the instance
     #
     xfrm = TransformationFactory('bilevel.linear_mpec')
     xfrm.apply_to(self._instance)
     xfrm = TransformationFactory('mpec.simple_disjunction')
     xfrm.apply_to(self._instance)
     xfrm = TransformationFactory('gdp.bigm')
     xfrm.apply_to(self._instance, default_bigM=100000)
     #
     # Solve with a specified solver
     #
     solver = self.options.solver
     if not self.options.solver:
         solver = 'glpk'
     # use the with block here so that deactivation of the
     # solver plugin always occurs thereby avoiding memory
     # leaks caused by plugins!
     with pyomo.opt.SolverFactory(solver) as opt:
         #
         self.results = []
         #
         # **NOTE: It would be better to override _presolve on the
         #         base class of this solver as you might be
         #         missing a number of keywords that were passed
         #         into the solve method (e.g., none of the
         #         io_options are getting relayed to the subsolver
         #         here).
         #
         self.results.append(opt.solve(self._instance,
                                       tee=self._tee,
                                       timelimit=self._timelimit))
     #
     stop_time = time.time()
     self.wall_time = stop_time - start_time
     #
     # Deactivate the block that contains the optimality conditions,
     # and reactivate SubModel
     #
     self._instance._transformation_data['bilevel.linear_mpec'].submodel_cuid.find_component(self._instance).activate()
     self._instance._transformation_data['bilevel.linear_mpec'].block_cuid.find_component(self._instance).deactivate()
     #
     # Return the sub-solver return condition value and log
     #
     return pyutilib.misc.Bunch(rc=getattr(opt,'_rc', None),
                                log=getattr(opt,'_log',None))
Exemple #50
0
 def test_solve_with_store3(self):
     model = ConcreteModel()
     model.A = RangeSet(1,4)
     model.b = Block()
     model.b.x = Var(model.A, bounds=(-1,1))
     model.b.obj = Objective(expr=sum_product(model.b.x))
     model.c = Constraint(expr=model.b.x[1] >= 0)
     opt = SolverFactory('glpk')
     results = opt.solve(model)
     #
     model.solutions.store_to(results)
     results.write(filename=join(currdir,'solve_with_store5.out'),
                   format='json')
     self.assertMatchesYamlBaseline(
         join(currdir,"solve_with_store5.out"),
         join(currdir,"solve_with_store4.txt"))
     #
     model.solutions.store_to(results, cuid=True)
     buf = pickle.dumps(results)
     results_ = pickle.loads(buf)
     model.solutions.load_from(results_)
     model.solutions.store_to(results_)
     results_.write(filename=join(currdir,'solve_with_store6.out'),
                    format='json')
     self.assertMatchesYamlBaseline(
         join(currdir,"solve_with_store6.out"),
         join(currdir,"solve_with_store4.txt"))
     #
     # Load results with string indices
     #
     tmodel = ConcreteModel()
     tmodel.A = RangeSet(1,4)
     tmodel.b = Block()
     tmodel.b.x = Var(tmodel.A, bounds=(-1,1))
     tmodel.b.obj = Objective(expr=sum_product(tmodel.b.x))
     tmodel.c = Constraint(expr=tmodel.b.x[1] >= 0)
     self.assertEqual(len(tmodel.solutions), 0)
     tmodel.solutions.load_from(results)
     self.assertEqual(len(tmodel.solutions), 1)
     tmodel.solutions.store_to(results)
     results.write(filename=join(currdir,'solve_with_store7.out'),
                   format='json')
     self.assertMatchesYamlBaseline(
         join(currdir,"solve_with_store7.out"),
         join(currdir,"solve_with_store4.txt"))
Exemple #51
0
 def test_solve4(self):
     model = ConcreteModel()
     model.A = RangeSet(1,4)
     model.x = Var(model.A, bounds=(-1,1))
     def obj_rule(model):
         return summation(model.x)
     model.obj = Objective(rule=obj_rule)
     def c_rule(model):
         expr = 0
         for i in model.A:
             expr += i*model.x[i]
         return expr == 0
     model.c = Constraint(rule=c_rule)
     opt = solver['glpk']
     results = opt.solve(model, symbolic_solver_labels=True)
     model.solutions.store_to(results)
     results.write(filename=currdir+'solve4.out', format='json')
     self.assertMatchesJsonBaseline(currdir+"solve4.out",currdir+"solve1.txt", tolerance=1e-4)
Exemple #52
0
 def test_solve_with_store4(self):
     model = ConcreteModel()
     model.A = RangeSet(1,4)
     model.b = Block()
     model.b.x = Var(model.A, bounds=(-1,1))
     model.b.obj = Objective(expr=summation(model.b.x))
     model.c = Constraint(expr=model.b.x[1] >= 0)
     opt = solver['glpk']
     results = opt.solve(model, load_solutions=False)
     self.assertEqual(len(model.solutions), 0)
     self.assertEqual(len(results.solution), 1)
     model.solutions.load_from(results)
     self.assertEqual(len(model.solutions), 1)
     self.assertEqual(len(results.solution), 1)
     #
     model.solutions.store_to(results)
     results.write(filename=currdir+'solve_with_store8.out', format='json')
     self.assertMatchesYamlBaseline(currdir+"solve_with_store8.out", currdir+"solve_with_store4.txt")
Exemple #53
0
    def test_blending(self):
        """ The blending example from the PuLP documentation """
        model = ConcreteModel()

        model.x1 = Var(bounds=(0,None), doc="ChickenPercent")
        model.x2 = Var(bounds=(0,None), doc="BeefPercent")

        model.obj = Objective(expr=0.013*model.x1 + 0.008*model.x2, doc="Total Cost of Ingredients per can")

        model.c0 = Constraint(expr=model.x1+model.x2 == 100.0, doc="Percentage Sum")
        model.c1 = Constraint(expr=0.100*model.x1 + 0.200*model.x2 >= 8.0, doc="Protein Requirement")
        model.c2 = Constraint(expr=0.080*model.x1 + 0.100*model.x2 >= 6.0, doc="Fat Requirement")
        model.c3 = Constraint(expr=0.001*model.x1 + 0.005*model.x2 <= 2.0, doc="Fiber Requirement")
        model.c4 = Constraint(expr=0.002*model.x1 + 0.005*model.x2 <= 0.4, doc="Salt Requirement")
        opt = SolverFactory('glpk')
        results = opt.solve(model)
        model.solutions.store_to(results)
        results.write(filename=currdir+"blend.out", format='json')
        self.assertMatchesJsonBaseline(currdir+"blend.out",currdir+"blend.txt", tolerance=1e-2)
Exemple #54
0
 def test_solve_with_pickle(self):
     model = ConcreteModel()
     model.A = RangeSet(1,4)
     model.b = Block()
     model.b.x = Var(model.A, bounds=(-1,1))
     model.b.obj = Objective(expr=summation(model.b.x))
     model.c = Constraint(expr=model.b.x[1] >= 0)
     opt = solver['glpk']
     self.assertEqual(len(model.solutions), 0)
     results = opt.solve(model, symbolic_solver_labels=True)
     self.assertEqual(len(model.solutions), 1)
     #
     self.assertEqual(model.solutions[0].gap, 0.0)
     self.assertEqual(model.solutions[0].status, SolutionStatus.feasible)
     self.assertEqual(model.solutions[0].message, None)
     #
     buf = pickle.dumps(model)
     tmodel = pickle.loads(buf)
     self.assertEqual(len(tmodel.solutions), 1)
     self.assertEqual(tmodel.solutions[0].gap, 0.0)
     self.assertEqual(tmodel.solutions[0].status, SolutionStatus.feasible)
     self.assertEqual(tmodel.solutions[0].message, None)
Exemple #55
0
    def test_nonnegative_transform_3(self):
        self.model.S = RangeSet(0,10)
        self.model.T = Set(initialize=["foo", "bar"])

        # Unindexed, singly indexed, and doubly indexed variables with
        # explicit bounds
        self.model.x1 = Var(bounds=(-3, 3))
        self.model.y1 = Var(self.model.S, bounds=(-3, 3))
        self.model.z1 = Var(self.model.S, self.model.T, bounds=(-3, 3))

        # Unindexed, singly indexed, and doubly indexed variables with
        # rule-defined bounds
        def boundsRule(*args):
            return (-4, 4)
        self.model.x2 = Var(bounds=boundsRule)
        self.model.y2 = Var(self.model.S, bounds=boundsRule)
        self.model.z2 = Var(self.model.S, self.model.T, bounds=boundsRule)


        # Unindexed, singly indexed, and doubly indexed variables with
        # explicit domains
        self.model.x3 = Var(domain=NegativeReals, bounds=(-10, 10))
        self.model.y3 = Var(self.model.S, domain = NegativeIntegers, bounds=(-10, 10))
        self.model.z3 = Var(self.model.S, self.model.T, domain = Reals, bounds=(-10, 10))

        # Unindexed, singly indexed, and doubly indexed variables with
        # rule-defined domains
        def domainRule(*args):
            if len(args) == 1:
                arg = 0
            else:
                arg = args[1]

            if len(args) == 1 or arg == 0:
                return NonNegativeReals
            elif arg == 1:
                return NonNegativeIntegers
            elif arg == 2:
                return NonPositiveReals
            elif arg == 3:
                return NonPositiveIntegers
            elif arg == 4:
                return NegativeReals
            elif arg == 5:
                return NegativeIntegers
            elif arg == 6:
                return PositiveReals
            elif arg == 7:
                return PositiveIntegers
            elif arg == 8:
                return Reals
            elif arg == 9:
                return Integers
            elif arg == 10:
                return Binary
            else:
                return Reals

        self.model.x4 = Var(domain=domainRule, bounds=(-10, 10))
        self.model.y4 = Var(self.model.S, domain=domainRule, bounds=(-10, 10))
        self.model.z4 = Var(self.model.S, self.model.T, domain=domainRule, bounds=(-10, 10))

        def objRule(model):
            return sum(5*sum_product(model.__getattribute__(c+n)) \
                       for c in ('x', 'y', 'z') for n in ('1', '2', '3', '4'))

        self.model.obj = Objective(rule=objRule)

        transform = TransformationFactory('core.nonnegative_vars')
        instance=self.model.create_instance()
        transformed = transform.create_using(instance)

        opt = SolverFactory("glpk")

        instance_sol = opt.solve(instance)
        transformed_sol = opt.solve(transformed)

        self.assertEqual(
            instance_sol["Solution"][0]["Objective"]['obj']["value"],
            transformed_sol["Solution"][0]["Objective"]['obj']["value"]
            )
def maximize_one_over_mu(settings, n, k, var_lower, var_upper, node_pos,
                         mat, integer_vars):
    """Compute the maximum of :math: `1/\mu`.

    Construct a PyOmo model to maximize :math: `1/\mu`

    See paper by Costa and Nannicini, equation (7) pag 4, and the
    references therein.

    Parameters
    ----------
 
    settings : rbfopt_settings.RbfSettings
        Global and algorithmic settings.

    n : int
        The dimension of the problem, i.e. size of the space.

    k : int
        Number of nodes, i.e. interpolation points.

    var_lower : List[float]
        Vector of variable lower bounds.
    
    var_upper : List[float]
        Vector of variable upper bounds.

    node_pos : List[List[float]]
        List of coordinates of the nodes

    mat : numpy.matrix
        The matrix necessary for the computation. This is the inverse
        of the matrix [Phi P; P^T 0], see paper as cited above. Must
        be a square numpy.matrix of appropriate dimension.

    integer_vars : List[int] or None
        A list containing the indices of the integrality constrained
        variables. If None or empty list, all variables are assumed to
        be continuous.

    Returns
    -------
    float
        A maximizer. It is difficult to do global optimization so
        typically this method returns a local maximum.

    Raises
    ------
    ValueError
        If the type of radial basis function is not supported.
    RuntimeError
        If the solver cannot be found.
    """
    assert(len(var_lower)==n)
    assert(len(var_upper)==n)
    assert(len(node_pos)==k)
    assert(isinstance(mat, np.matrix))
    assert(isinstance(settings, RbfSettings))

    # Determine the size of the P matrix
    p = ru.get_size_P_matrix(settings, n)
    assert(mat.shape==(k + p, k + p))

    # Instantiate model
    if (ru.get_degree_polynomial(settings) == 1):
        model = rbfopt_degree1_models
    elif (ru.get_degree_polynomial(settings) == 0):
        model = rbfopt_degree0_models
    else:
        raise ValueError('RBF type ' + settings.rbf + ' not supported')

    instance = model.create_max_one_over_mu_model(settings, n, k, var_lower, 
                                                  var_upper, node_pos, mat,
                                                  integer_vars)

    # Initialize variables for local search
    initialize_instance_variables(settings, instance)

    # Instantiate optimizer
    opt = pyomo.opt.SolverFactory(config.MINLP_SOLVER_EXEC, solver_io='nl')
    if opt is None:
        raise RuntimeError('Solver ' + config.MINLP_SOLVER_EXEC + ' not found')
    set_minlp_solver_options(opt)

    # Solve and load results
    try:
        results = opt.solve(instance, keepfiles = False, 
                            tee = settings.print_solver_output)
        if ((results.solver.status == pyomo.opt.SolverStatus.ok) and 
            (results.solver.termination_condition == 
             TerminationCondition.optimal)):
            # this is feasible and optimal
            instance.solutions.load_from(results)
            point = [instance.x[i].value for i in instance.N]
            ru.round_integer_vars(point, integer_vars)
        else:
            point = None
    except:
        point = None

    return point
def get_noisy_rbf_coefficients(settings, n, k, Phimat, Pmat, node_val,
                               fast_node_index, fast_node_err_bounds,
                               init_rbf_lambda = None, init_rbf_h = None):
    """Obtain coefficients for the noisy RBF interpolant.

    Solve a quadratic problem to compute the coefficients of the RBF
    interpolant that minimizes bumpiness and lets all points with
    index in fast_node_index deviate by a specified percentage from
    their value.

    Parameters
    ----------

    settings : rbfopt_settings.RbfSettings
        Global and algorithmic settings.

    n : int
        The dimension of the problem, i.e. size of the space.

    k : int
        Number of nodes, i.e. interpolation points.

    Phimat : numpy.matrix
        Matrix Phi, i.e. top left part of the standard RBF matrix.

    Pmat : numpy.matrix
        Matrix P, i.e. top right part of the standard RBF matrix.

    node_val : List[float]
        List of values of the function at the nodes.
    
    fast_node_index : List[int]
        List of indices of nodes whose function value should be
        considered variable withing the allowed range.
    
    fast_node_err_bounds : List[(float, float)]
        Allowed deviation from node values for nodes affected by
        error. This is a list of pairs (lower, upper) of the same
        length as fast_node_index.

    init_rbf_lambda : List[float] or None
        Initial values that should be used for the lambda coefficients
        of the RBF. Can be None.

    init_rbf_h : List[float] or None
        Initial values that should be used for the h coefficients of
        the RBF. Can be None.

    Returns
    ---
    (List[float], List[float])
        Two vectors: lambda coefficients (for the radial basis
        functions), and h coefficients (for the polynomial). If
        initialization information was provided and was valid, then
        some values will always be returned. Otherwise, it will be
        None.

    Raises
    ------
    ValueError
        If the type of radial basis function is not supported.
    RuntimeError
        If the solver cannot be found.
    """    
    assert(isinstance(settings, RbfSettings))
    assert(len(node_val)==k)
    assert(isinstance(Phimat, np.matrix))
    assert(isinstance(Pmat, np.matrix))
    assert(len(fast_node_index)==len(fast_node_err_bounds))
    assert(init_rbf_lambda is None or len(init_rbf_lambda)==k)
    assert(init_rbf_h is None or len(init_rbf_h)==Pmat.shape[1])
    
    # Instantiate model
    if (ru.get_degree_polynomial(settings) == 1):
        model = rbfopt_degree1_models
    elif (ru.get_degree_polynomial(settings) == 0):
        model = rbfopt_degree0_models
    else:
        raise ValueError('RBF type ' + settings.rbf + ' not supported')

    instance = model.create_min_bump_model(settings, n, k, Phimat, Pmat,
                                           node_val, fast_node_index,
                                           fast_node_err_bounds)

    # Instantiate optimizer
    opt = pyomo.opt.SolverFactory(config.NLP_SOLVER_EXEC, solver_io='nl')
    if opt is None:
        raise RuntimeError('Solver ' + config.NLP_SOLVER_EXEC + ' not found')
    set_nlp_solver_options(opt)

    # Initialize instance variables with the solution provided (if
    # available). This should avoid any infeasibility.
    if (init_rbf_lambda is not None and init_rbf_h is not None):
        for i in range(len(init_rbf_lambda)):
            instance.rbf_lambda[i] = init_rbf_lambda[i]
            instance.slack[i] = 0.0
        for i in range(len(init_rbf_h)):
            instance.rbf_h[i] = init_rbf_h[i]

    # Solve and load results
    try:
        results = opt.solve(instance, keepfiles = False,
                            tee = settings.print_solver_output)
        if ((results.solver.status == pyomo.opt.SolverStatus.ok) and 
            (results.solver.termination_condition == 
             TerminationCondition.optimal)):
            # this is feasible and optimal
            instance.solutions.load_from(results)
            rbf_lambda = [instance.rbf_lambda[i].value for i in instance.K]
            rbf_h = [instance.rbf_h[i].value for i in instance.P]
        else:
            # If we have initialization information, return it. It is
            # a feasible solution. Otherwise, this will be None.
            rbf_lambda = init_rbf_lambda
            rbf_h = init_rbf_h
    except:
        # If we have initialization information, return it. It is
        # a feasible solution. Otherwise, this will be None.
        rbf_lambda = init_rbf_lambda
        rbf_h = init_rbf_h

    return (rbf_lambda, rbf_h)
Exemple #58
0
    def test_standard_form_transform_2(self):
        """ Same as #1, but adds constraints """
        self.model.S = RangeSet(0,10)
        self.model.T = Set(initialize=["foo", "bar"])

        # Unindexed, singly indexed, and doubly indexed variables with
        # explicit bounds
        self.model.x1 = Var(bounds=(-3, 3))
        self.model.y1 = Var(self.model.S, bounds=(-3, 3))
        self.model.z1 = Var(self.model.S, self.model.T, bounds=(-3, 3))

        # Unindexed, singly indexed, and doubly indexed variables with
        # rule-defined bounds
        def boundsRule(*args):
            return (-4, 4)
        self.model.x2 = Var(bounds=boundsRule)
        self.model.y2 = Var(self.model.S, bounds=boundsRule)
        self.model.z2 = Var(self.model.S, self.model.T, bounds=boundsRule)


        # Unindexed, singly indexed, and doubly indexed variables with
        # explicit domains
        self.model.x3 = Var(domain=NegativeReals, bounds=(-10, 10))
        self.model.y3 = Var(self.model.S, domain = NegativeIntegers, bounds=(-10, 10))
        self.model.z3 = Var(self.model.S, self.model.T, domain = Reals, bounds=(-10, 10))

        # Unindexed, singly indexed, and doubly indexed variables with
        # rule-defined domains
        def domainRule(*args):
            if len(args) == 1:
                arg = 0
            else:
                arg = args[1]

            if len(args) == 1 or arg == 0:
                return NonNegativeReals
            elif arg == 1:
                return NonNegativeIntegers
            elif arg == 2:
                return NonPositiveReals
            elif arg == 3:
                return NonPositiveIntegers
            elif arg == 4:
                return NegativeReals
            elif arg == 5:
                return NegativeIntegers
            elif arg == 6:
                return PositiveReals
            elif arg == 7:
                return PositiveIntegers
            elif arg == 8:
                return Reals
            elif arg == 9:
                return Integers
            elif arg == 10:
                return Binary
            else:
                return Reals

        self.model.x4 = Var(domain=domainRule, bounds=(-10, 10))
        self.model.y4 = Var(self.model.S, domain=domainRule, bounds=(-10, 10))
        self.model.z4 = Var(self.model.S, self.model.T, domain=domainRule, bounds=(-10, 10))

        # Add some constraints
        def makeXConRule(var):
            def xConRule(model, var):
                return (-1, var, 1)

        def makeYConRule(var):
            def yConRule(model, var, s):
                return (-1, var[s], 1)

        def makeZConRule(var):
            def zConRule(model, var, s, t):
                return (-1, var[s, t], 1)

        for n in ('1', '2', '3', '4'):
            self.model.__setattr__(
                "x" + n + "_constraint",
                Constraint(
                rule=makeXConRule(
                self.model.__getattribute__("x"+n))))

            self.model.__setattr__(
                "y" + n + "_constraint",
                Constraint(
                rule=makeYConRule(
                self.model.__getattribute__("y"+n))))

            self.model.__setattr__(
                "z" + n + "_constraint",
                Constraint(
                rule=makeZConRule(
                self.model.__getattribute__("z"+n))))

        def objRule(model):
            return sum(5*sum_product(model.__getattribute__(c+n)) \
                       for c in ('x', 'y', 'z') for n in ('1', '2', '3', '4'))

        self.model.obj = Objective(rule=objRule)

        transform = StandardForm()
        instance=self.model.create_instance()
        transformed = transform(instance)

        opt = SolverFactory("glpk")

        instance_sol = opt.solve(instance)
        transformed_sol = opt.solve(transformed)

        self.assertEqual(
            instance_sol["Solution"][0]["Objective"]['obj']["value"],
            transformed_sol["Solution"][0]["Objective"]['obj']["value"]
            )
Exemple #59
0
    def _apply_solver(self):
        start_time = time.time()
        #
        # Cache the instance
        #
        xfrm = TransformationFactory('bilevel.linear_dual')
        xfrm.apply_to(self._instance)
        #
        # Apply an additional transformation to remap bilinear terms
        #
        if self.options.transform is None:
            xfrm = None
        else:
            xfrm = TransformationFactory(self.options.transform)
            xfrm.apply_to(self._instance)
        #
        # Solve with a specified solver
        #
        solver = self.options.solver
        if not self.options.solver:
            solver = 'glpk'

        # use the with block here so that deactivation of the
        # solver plugin always occurs thereby avoiding memory
        # leaks caused by plugins!
        with pyomo.opt.SolverFactory(solver) as opt:
            self.results = []
            #
            # **NOTE: It would be better to override _presolve on the
            #         base class of this solver as you might be
            #         missing a number of keywords that were passed
            #         into the solve method (e.g., none of the
            #         io_options are getting relayed to the subsolver
            #         here).
            #
            self.results.append(opt.solve(self._instance,
                                          tee=self._tee,
                                          timelimit=self._timelimit))
            #
            # Transform the result back into the original model
            #
            tdata = self._instance._transformation_data['bilevel.linear_dual']
            unfixed_cuids = set()
            # Copy variable values and fix them
            for vuid in tdata.fixed:
                for index_, data_ in vuid.find_component_on(self._instance).iteritems():
                    if not data_.fixed:
                        data_.value = self._instance.find_component(data_).value
                        data_.fixed = True
                        unfixed_cuids.add(ComponentUID(data_))
            # Reclassify the SubModel components and resolve
            for name_ in tdata.submodel:
                submodel = getattr(self._instance, name_)
                submodel.activate()
                dual_submodel = getattr(self._instance, name_+'_dual')
                dual_submodel.deactivate()
                pyomo.util.PyomoAPIFactory('pyomo.repn.compute_canonical_repn')({}, model=submodel)
                self._instance.reclassify_component_type(name_, Block)
                # use the with block here so that deactivation of the
                # solver plugin always occurs thereby avoiding memory
                # leaks caused by plugins!
                with pyomo.opt.SolverFactory(solver) as opt_inner:
                    #
                    # **NOTE: It would be better to override _presolve on the
                    #         base class of this solver as you might be
                    #         missing a number of keywords that were passed
                    #         into the solve method (e.g., none of the
                    #         io_options are getting relayed to the subsolver
                    #         here).
                    #
                    self.results.append(opt_inner.solve(self._instance,
                                                        tee=self._tee,
                                                        timelimit=self._timelimit,
                                                        select=None))
                    self._instance.solutions.select(0, ignore_fixed_vars=True)
                    data_.parent_component().parent_block().reclassify_component_type(name_, SubModel)
            # Unfix variables
            for vuid in tdata.fixed:
                for index_, data_ in vuid.find_component_on(self._instance).iteritems():
                    if ComponentUID(data_) in unfixed_cuids:
                        data_.fixed = False
            stop_time = time.time()
            self.wall_time = stop_time - start_time
            # Reactivate top level objective
            for oname, odata in self._instance.component_map(Objective).items():
                odata.activate()
            #
            # Return the sub-solver return condition value and log
            #
            return pyutilib.misc.Bunch(rc=getattr(opt,'_rc', None),
                                       log=getattr(opt,'_log',None))
Exemple #60
0
    def _apply_solver(self):
        start_time = time.time()
        #
        # Cache the instance
        #
        xfrm = TransformationFactory('bilevel.linear_dual')
        xfrm.apply_to(self._instance)
        #
        # Verify whether the objective is linear
        #
        nonlinear=False
        for odata in self._instance.component_objects(Objective, active=True):
            nonlinear = odata.expr.polynomial_degree() != 1
            # Stop after the first objective
            break
        #
        # Apply an additional transformation to remap bilinear terms
        #
        if nonlinear:
            gdp_xfrm = TransformationFactory("gdp.bilinear")
            gdp_xfrm.apply_to(self._instance)
            mip_xfrm = TransformationFactory("gdp.bigm")
            mip_xfrm.apply_to(self._instance, default_bigM=self.options.get('bigM',100000))
        #
        # Solve with a specified solver
        #
        solver = self.options.solver
        if not self.options.solver:
            solver = 'glpk'

        # use the with block here so that deactivation of the
        # solver plugin always occurs thereby avoiding memory
        # leaks caused by plugins!
        with pyomo.opt.SolverFactory(solver) as opt:
            self.results = []
            #
            # **NOTE: It would be better to override _presolve on the
            #         base class of this solver as you might be
            #         missing a number of keywords that were passed
            #         into the solve method (e.g., none of the
            #         io_options are getting relayed to the subsolver
            #         here).
            #
            self.results.append(opt.solve(self._instance,
                                          tee=self._tee,
                                          timelimit=self._timelimit))
            #print("POST-SOLVE - BEGIN")
            #self._instance.write("tmp.lp", io_options={"symbolic_solver_labels":True})
            #self._instance.pprint()
            #self._instance.display()
            #print("POST-SOLVE - END")
            #
            # If the problem was bilinear, then reactivate the original data
            #
            if nonlinear:
                i = 0
                for v in self._instance.bilinear_data_.vlist.itervalues():
                    #print(v)
                    #print(v.cname())
                    #print(type(v))
                    #print(v.value)
                    if abs(v.value) <= 1e-7:
                        self._instance.bilinear_data_.vlist_boolean[i] = 0
                    else:
                        self._instance.bilinear_data_.vlist_boolean[i] = 1
                    i = i + 1
                #
                self._instance.bilinear_data_.deactivate()
            #
            # Transform the result back into the original model
            #
            tdata = self._instance._transformation_data['bilevel.linear_dual']
            unfixed_cuids = set()
            # Copy variable values and fix them
            for vuid in tdata.fixed:
                for index_, data_ in vuid.find_component_on(self._instance).iteritems():
                    if not data_.fixed:
                        data_.value = self._instance.find_component(data_).value
                        data_.fixed = True
                        unfixed_cuids.add(ComponentUID(data_))
            # Reclassify the SubModel components and resolve
            for name_ in tdata.submodel:
                submodel = getattr(self._instance, name_)
                submodel.activate()
                for (name, data) in submodel.component_map(active=False).items():
                    if not isinstance(data,Var) and not isinstance(data,Set):
                        data.activate()
                dual_submodel = getattr(self._instance, name_+'_dual')
                dual_submodel.deactivate()
                pyomo.util.PyomoAPIFactory('pyomo.repn.compute_canonical_repn')({}, model=submodel)
                self._instance.reclassify_component_type(name_, Block)
                # use the with block here so that deactivation of the
                # solver plugin always occurs thereby avoiding memory
                # leaks caused by plugins!
                with pyomo.opt.SolverFactory(solver) as opt_inner:
                    #
                    # **NOTE: It would be better to override _presolve on the
                    #         base class of this solver as you might be
                    #         missing a number of keywords that were passed
                    #         into the solve method (e.g., none of the
                    #         io_options are getting relayed to the subsolver
                    #         here).
                    #
                    results = opt_inner.solve(self._instance, tee=self._tee, timelimit=self._timelimit)
                                                        #select=None)
            # Unfix variables
            for vuid in tdata.fixed:
                for index_, data_ in vuid.find_component_on(self._instance).iteritems():
                    if ComponentUID(data_) in unfixed_cuids:
                        data_.fixed = False
            #
            self._instance.solutions.select(0, ignore_fixed_vars=True)
            self.results.append(results)
            #
            stop_time = time.time()
            self.wall_time = stop_time - start_time
            self.results_obj = self._setup_results_obj()
            #
            # Reactivate top level objective
            # and reclassify the submodel
            #
            for oname, odata in self._instance.component_map(Objective).items():
                odata.activate()
            # TODO: rework the Block logic to allow for searching SubModel objects for variables, etc.
            #data_.parent_component().parent_block().reclassify_component_type(name_, SubModel)
            #
            # Return the sub-solver return condition value and log
            #
            return pyutilib.misc.Bunch(rc=getattr(opt,'_rc', None),
                                       log=getattr(opt,'_log',None))