Exemple #1
0
def iddr_rid(queue, m, n, matvect, krank):
    id_srand = util.setup_rand(queue)

    blas.setup()

    dtype = 'float64'
    clx = cl_array.zeros(queue, m, dtype)
    rnorms = cl_array.Array(queue, n, dtype)
    lst = cl_array.Array(queue, n, np.int32)
    proj = cl_array.Array(queue, (krank+2,n), dtype)


    l = krank + 2

    for i in range(l):
        id_srand(m, clx)
        matvect(clx, proj[i,:])


    iddr_id(queue, l, n, proj, krank, lst, rnorms)

    blas.teardown()

    return lst, proj
Exemple #2
0
rng = np.random.RandomState(1)  # change the seed to see different data
A[...] = rng.uniform(-1, 1, size=A.shape)
x[...] = rng.uniform(-1, 1, size=x.shape)
y[...] = rng.uniform(-1, 1, size=y.shape)

# allocate OpenCL memory on the device
clA = Array(queue, A.shape, A.dtype)
clx = Array(queue, x.shape, x.dtype)
cly = Array(queue, y.shape, y.dtype)

# copy data to device
clA.set(A)
clx.set(x)

# compute a matrix-vector product (gemv)
blas.gemv(queue, clA, clx, cly)

# check the result
print("Expected: ", np.dot(A, x))
print("Actual:   ", cly.get())

# try a matrix-vector product with the transpose
cly.set(y)
blas.gemv(queue, clA, cly, clx, transA=True)
print("Expected: ", np.dot(A.T, y))
print("Actual:   ", clx.get())

# tidy up the BLAS
blas.teardown()