def test_tourism(self):
        # OECD -> Industry and Services -> Inbound Tourism
        result = read_jsdmx(os.path.join(self.dirpath, 'jsdmx', 'tourism.json'))
        self.assertTrue(isinstance(result, pd.DataFrame))

        exp_col = pd.MultiIndex.from_product([['Japan'],
                                              ['China', 'Hong Kong, China',
                                               'Total international arrivals',
                                               'Total international receipts',
                                               'International passenger transport receipts',
                                               'International travel receipts',
                                               'Korea', 'Chinese Taipei', 'United States']],
                                             names=['Country', 'Variable'])
        exp_idx = pd.DatetimeIndex(['2004', '2005', '2006', '2007', '2008',
                                    '2009', '2010', '2011', '2012'], name='Year')

        values = np.array([[616, 300, 6138, 1550, 330, 1220, 1588, 1081, 760],
                           [653, 299, 6728, 1710, 340, 1370, 1747, 1275, 822],
                           [812, 352, 7334, 1330, 350, 980, 2117, 1309, 817],
                           [942, 432, 8347, 1460, 360, 1100, 2601, 1385, 816],
                           [1000, 550, 8351, 1430, 310, 1120, 2382, 1390, 768],
                           [1006, 450, 6790, 1170, 210, 960, 1587, 1024, 700],
                           [1413, 509, 8611, 1350, 190, 1160, 2440, 1268, 727],
                           [1043, 365, 6219, 1000, 100, 900, 1658, 994, 566],
                           [1430, 482, 8368, 1300, 100, 1200, 2044, 1467, 717]])
        expected = pd.DataFrame(values, index=exp_idx, columns=exp_col)
        tm.assert_frame_equal(result, expected)
Exemple #2
0
    def test_land_use(self):
        # OECD -> Environment -> Resources Land Use
        result = read_jsdmx(
            os.path.join(self.dirpath, 'jsdmx', 'land_use.json'))
        self.assertTrue(isinstance(result, pd.DataFrame))
        result = result.ix['2010':'2011']

        exp_col = pd.MultiIndex.from_product(
            [['Japan', 'United States'],
             [
                 'Arable land and permanent crops',
                 'Arable and cropland % land area', 'Total area', 'Forest',
                 'Forest % land area', 'Land area',
                 'Permanent meadows and pastures',
                 'Meadows and pastures % land area', 'Other areas',
                 'Other % land area'
             ]],
            names=['Country', 'Variable'])
        exp_idx = pd.DatetimeIndex(['2010', '2011'], name='Year')
        values = np.array([[
            45930, 12.601, 377950, 249790, 68.529, 364500, np.nan, np.nan,
            68780, 18.87, 1624330, 17.757, 9831510, 3040220, 33.236, 9147420,
            2485000, 27.166, 1997870, 21.841
        ],
                           [
                               45610, 12.513, 377955, 249878, 68.554, 364500,
                               np.nan, np.nan, 69012, 18.933, 1627625, 17.793,
                               9831510, 3044048, 33.278, 9147420, 2485000,
                               27.166, 1990747, 21.763
                           ]])
        expected = pd.DataFrame(values, index=exp_idx, columns=exp_col)
        tm.assert_frame_equal(result, expected)
Exemple #3
0
    def test_tourism(self):
        # OECD -> Industry and Services -> Inbound Tourism
        result = read_jsdmx(os.path.join(self.dirpath, 'jsdmx',
                                         'tourism.json'))
        self.assertTrue(isinstance(result, pd.DataFrame))

        exp_col = pd.MultiIndex.from_product(
            [['Japan'],
             [
                 'China', 'Hong Kong, China', 'Total international arrivals',
                 'Total international receipts',
                 'International passenger transport receipts',
                 'International travel receipts', 'Korea', 'Chinese Taipei',
                 'United States'
             ]],
            names=['Country', 'Variable'])
        exp_idx = pd.DatetimeIndex([
            '2004', '2005', '2006', '2007', '2008', '2009', '2010', '2011',
            '2012'
        ],
                                   name='Year')

        values = np.array([[616, 300, 6138, 1550, 330, 1220, 1588, 1081, 760],
                           [653, 299, 6728, 1710, 340, 1370, 1747, 1275, 822],
                           [812, 352, 7334, 1330, 350, 980, 2117, 1309, 817],
                           [942, 432, 8347, 1460, 360, 1100, 2601, 1385, 816],
                           [1000, 550, 8351, 1430, 310, 1120, 2382, 1390, 768],
                           [1006, 450, 6790, 1170, 210, 960, 1587, 1024, 700],
                           [1413, 509, 8611, 1350, 190, 1160, 2440, 1268, 727],
                           [1043, 365, 6219, 1000, 100, 900, 1658, 994, 566],
                           [1430, 482, 8368, 1300, 100, 1200, 2044, 1467,
                            717]])
        expected = pd.DataFrame(values, index=exp_idx, columns=exp_col)
        tm.assert_frame_equal(result, expected)
    def test_land_use(self):
        # OECD -> Environment -> Resources Land Use
        result = read_jsdmx(os.path.join(self.dirpath, 'jsdmx', 'land_use.json'))
        self.assertTrue(isinstance(result, pd.DataFrame))
        result = result.ix['2010':'2011']

        exp_col = pd.MultiIndex.from_product([['Japan', 'United States'],
                                              ['Arable land and permanent crops',
                                               'Arable and cropland % land area',
                                               'Total area', 'Forest', 'Forest % land area',
                                               'Land area', 'Permanent meadows and pastures',
                                               'Meadows and pastures % land area',
                                               'Other areas', 'Other % land area']],
                                             names=['Country', 'Variable'])
        exp_idx = pd.DatetimeIndex(['2010', '2011'], name='Year')
        values = np.array([[45930, 12.601, 377950, 249790, 68.529, 364500, np.nan, np.nan,
                            68780, 18.87, 1624330, 17.757, 9831510, 3040220, 33.236, 9147420,
                            2485000, 27.166, 1997870, 21.841],
                           [45610, 12.513, 377955, 249878, 68.554, 364500, np.nan, np.nan,
                            69012, 18.933, 1627625, 17.793, 9831510, 3044048, 33.278, 9147420,
                            2485000, 27.166, 1990747, 21.763]])
        expected = pd.DataFrame(values, index=exp_idx, columns=exp_col)
        tm.assert_frame_equal(result, expected)
Exemple #5
0
 def _read(self, **kwargs):
     data = self._requests_get().json()
     result = read_jsdmx(data)
     # There is data not be sorted by time
     result = result.sort_index()
     return result
Exemple #6
0
 def _read(self, **kwargs):
     data = self._requests_get().json()
     result = read_jsdmx(data)
     # There is data not be sorted by time
     result = result.sort_index()
     return result