Exemple #1
0
def illum_filter(spat_flat_data_raw, med_width):
    """
    Filter the flat data to produce the empirical illumination
    profile.

    This is primarily a convenience method for
    :func:`construct_illum_profile`. The method first median filters
    with a window set by ``med_width`` and then Gaussian-filters the
    result with a kernel sigma set to be the maximum of 0.5 or
    ``med_width``/20.

    Args:
        spat_flat_data_raw (`numpy.ndarray`_);
            Raw flat data collapsed along the spectral direction.
        med_width (:obj:`int`):
            Width of the median filter window.

    Returns:
        `numpy.ndarray`_: Returns the filtered spatial profile of the
        flat data.
    """
    # Median filter the data
    spat_flat_data = utils.fast_running_median(spat_flat_data_raw, med_width)
    # Gaussian filter the data with a kernel that is 1/20th of the
    # median-filter width (or at least 0.5 pixels where here a "pixel"
    # is just the index of the data to fit)
    return ndimage.filters.gaussian_filter1d(spat_flat_data, np.fmax(med_width/20.0, 0.5),
                                             mode='nearest')
Exemple #2
0
def get_delta_wave(wave, wave_gpm, frac_spec_med_filter=0.03):
    r"""
    Compute the change in wavelength per pixel.

    Given an input wavelength vector and an input good pixel mask, the *raw*
    change in wavelength is defined to be ``delta_wave[i] =
    wave[i+1]-wave[i]``, with ``delta_wave[-1] = delta_wave[-2]`` to force
    ``wave`` and ``delta_wave`` to have the same length.

    The method imposes a smoothness on the change in wavelength by (1)
    running a median filter over the raw values and (2) smoothing
    ``delta_wave`` with a Gaussian kernel. The boxsize for the median filter
    is set by ``frac_spec_med_filter``, and the :math:`\sigma` for the
    Gaussian kernel is either a 10th of that boxsize or 3 pixels (whichever
    is larger).

    Parameters
    ---------- 
    wave : float `numpy.ndarray`_, shape = (nspec,)
        Array of input wavelengths. Must be 1D.
    wave_gpm : bool `numpy.ndarray`_, shape = (nspec)
        Boolean good-pixel mask defining where the ``wave`` values are
        good.
    frac_spec_med_filter : :obj:`float`, optional
        Fraction of the length of the wavelength vector to use to median
        filter the raw change in wavelength, used to impose a smoothness.
        Default is 0.03, which means the boxsize for the running median
        filter will be approximately ``0.03*nspec`` (forced to be an odd
        number of pixels).

    Returns
    -------
    delta_wave : `numpy.ndarray`_, float, shape = (nspec,)
        A smooth estimate for the change in wavelength for each pixel in the
        input wavelength vector.
    """
    # Check input
    if wave.ndim != 1:
        msgs.error('Input wavelength array must be 1D.')

    nspec = wave.size
    # This needs to be an odd number
    nspec_med_filter = 2 * int(np.round(
        nspec * frac_spec_med_filter / 2.0)) + 1
    delta_wave = np.zeros_like(wave)
    wave_diff = np.diff(wave[wave_gpm])
    wave_diff = np.append(wave_diff, wave_diff[-1])
    wave_diff_filt = utils.fast_running_median(wave_diff, nspec_med_filter)

    # Smooth with a Gaussian kernel
    sig_res = np.fmax(nspec_med_filter / 10.0, 3.0)
    gauss_kernel = convolution.Gaussian1DKernel(sig_res)
    wave_diff_smooth = convolution.convolve(wave_diff_filt,
                                            gauss_kernel,
                                            boundary='extend')
    delta_wave[wave_gpm] = wave_diff_smooth
    return delta_wave
Exemple #3
0
    def fit(self, debug=False):
        """
        Construct a model of the flat-field image.

        For this method to work, :attr:`rawflatimg` must have been
        previously constructed; see :func:`build_pixflat`.

        The method loops through all slits provided by the :attr:`slits`
        object, except those that have been masked (i.e., slits with
        ``self.slits.mask == True`` are skipped).  For each slit:

            - Collapse the flat-field data spatially using the
              wavelength coordinates provided by the fit to the arc-line
              traces (:class:`pypeit.wavetilts.WaveTilts`), and fit the
              result with a bspline.  This provides the
              spatially-averaged spectral response of the instrument.
              The data used in the fit is trimmed toward the slit
              spatial center via the ``slit_trim`` parameter in
              :attr:`flatpar`.
            - Use the bspline fit to construct and normalize out the
              spectral response.
            - Collapse the normalized flat-field data spatially using a
              coordinate system defined by the left slit edge.  The data
              included in the spatial (illumination) profile calculation
              is expanded beyond the nominal slit edges using the
              ``slit_illum_pad`` parameter in :attr:`flatpar`.  The raw,
              collapsed data is then median filtered (see ``spat_samp``
              in :attr:`flatpar`) and Gaussian filtered; see
              :func:`pypeit.core.flat.illum_filter`.  This creates an
              empirical, highly smoothed representation of the
              illumination profile that is fit with a bspline using
              the :func:`spatial_fit` method.  The
              construction of the empirical illumination profile (i.e.,
              before the bspline fitting) can be done iteratively, where
              each iteration sigma-clips outliers; see the
              ``illum_iter`` and ``illum_rej`` parameters in
              :attr:`flatpar` and
              :func:`pypeit.core.flat.construct_illum_profile`.
            - If requested, the 1D illumination profile is used to
              "tweak" the slit edges by offsetting them to a threshold
              of the illumination peak to either side of the slit center
              (see ``tweak_slits_thresh`` in :attr:`flatpar`), up to a
              maximum allowed shift from the existing slit edge (see
              ``tweak_slits_maxfrac`` in :attr:`flatpar`).  See
              :func:`pypeit.core.tweak_slit_edges`.  If tweaked, the
              :func:`spatial_fit` is repeated to place it on the tweaked
              slits reference frame.
            - Use the bspline fit to construct the 2D illumination image
              (:attr:`msillumflat`) and normalize out the spatial
              response.
            - Fit the residuals of the flat-field data that has been
              independently normalized for its spectral and spatial
              response with a 2D bspline-polynomial fit.  The order of
              the polynomial has been optimized via experimentation; it
              can be changed but you should use extreme caution when
              doing so (see ``twod_fit_npoly``).  The multiplication of
              the 2D spectral response, 2D spatial response, and joint
              2D fit to the high-order residuals define the final flat
              model (:attr:`flat_model`).
            - Finally, the pixel-to-pixel response of the instrument is
              defined as the ratio of the raw flat data to the
              best-fitting flat-field model (:attr:`mspixelflat`)

        This method is the primary method that builds the
        :class:`FlatField` instance, constructing :attr:`mspixelflat`,
        :attr:`msillumflat`, and :attr:`flat_model`.  All of these
        attributes are altered internally.  If the slit edges are to be
        tweaked using the 1D illumination profile (``tweak_slits`` in
        :attr:`flatpar`), the tweaked slit edge arrays in the internal
        :class:`pypeit.edgetrace.SlitTraceSet` object, :attr:`slits`,
        are also altered.

        Used parameters from :attr:`flatpar`
        (:class:`pypeit.par.pypeitpar.FlatFieldPar`) are
        ``spec_samp_fine``, ``spec_samp_coarse``, ``spat_samp``,
        ``tweak_slits``, ``tweak_slits_thresh``,
        ``tweak_slits_maxfrac``, ``rej_sticky``, ``slit_trim``,
        ``slit_illum_pad``, ``illum_iter``, ``illum_rej``, and
        ``twod_fit_npoly``, ``saturated_slits``.

        **Revision History**:

            - 11-Mar-2005  First version written by Scott Burles.
            - 2005-2018    Improved by J. F. Hennawi and J. X. Prochaska
            - 3-Sep-2018 Ported to python by J. F. Hennawi and significantly improved

        Args:
            debug (:obj:`bool`, optional):
                Show plots useful for debugging. This will block
                further execution of the code until the plot windows
                are closed.

        """
        # TODO: break up this function!  Can it be partitioned into a series of "core" methods?
        # TODO: JFH I wrote all this code and will have to maintain it and I don't want to see it broken up.
        # TODO: JXP This definitely needs breaking up..

        # Init
        self.list_of_spat_bsplines = []

        # Set parameters (for convenience;
        spec_samp_fine = self.flatpar['spec_samp_fine']
        spec_samp_coarse = self.flatpar['spec_samp_coarse']
        tweak_slits = self.flatpar['tweak_slits']
        tweak_slits_thresh = self.flatpar['tweak_slits_thresh']
        tweak_slits_maxfrac = self.flatpar['tweak_slits_maxfrac']
        # If sticky, points rejected at each stage (spec, spat, 2d) are
        # propagated to the next stage
        sticky = self.flatpar['rej_sticky']
        trim = self.flatpar['slit_trim']
        pad = self.flatpar['slit_illum_pad']
        # Iteratively construct the illumination profile by rejecting outliers
        npoly = self.flatpar['twod_fit_npoly']
        saturated_slits = self.flatpar['saturated_slits']

        # Setup images
        nspec, nspat = self.rawflatimg.image.shape
        rawflat = self.rawflatimg.image
        # Good pixel mask
        gpm = np.ones_like(rawflat, dtype=bool) if self.rawflatimg.bpm is None else (
                1-self.rawflatimg.bpm).astype(bool)

        # Flat-field modeling is done in the log of the counts
        flat_log = np.log(np.fmax(rawflat, 1.0))
        gpm_log = (rawflat > 1.0) & gpm
        # set errors to just be 0.5 in the log
        ivar_log = gpm_log.astype(float)/0.5**2

        # Other setup
        nonlinear_counts = self.spectrograph.nonlinear_counts(self.rawflatimg.detector)

        # TODO -- JFH -- CONFIRM THIS SHOULD BE ON INIT
        # It does need to be *all* of the slits
        median_slit_widths = np.median(self.slits.right_init - self.slits.left_init, axis=0)

        if tweak_slits:
            # NOTE: This copies the input slit edges to a set that can be tweaked.
            self.slits.init_tweaked()

        # TODO: This needs to include a padding check
        # Construct three versions of the slit ID image, all of unmasked slits!
        #   - an image that uses the padding defined by self.slits
        slitid_img_init = self.slits.slit_img(initial=True)
        #   - an image that uses the extra padding defined by
        #     self.flatpar. This was always 5 pixels in the previous
        #     version.
        padded_slitid_img = self.slits.slit_img(initial=True, pad=pad)
        #   - and an image that trims the width of the slit using the
        #     parameter in self.flatpar. This was always 3 pixels in
        #     the previous version.
        # TODO: Fix this for when trim is a tuple
        trimmed_slitid_img = self.slits.slit_img(pad=-trim, initial=True)

        # Prep for results
        self.mspixelflat = np.ones_like(rawflat)
        self.msillumflat = np.ones_like(rawflat)
        self.flat_model = np.zeros_like(rawflat)

        # Allocate work arrays only once
        spec_model = np.ones_like(rawflat)
        norm_spec = np.ones_like(rawflat)
        norm_spec_spat = np.ones_like(rawflat)
        twod_model = np.ones_like(rawflat)

        # #################################################
        # Model each slit independently
        for slit_idx, slit_spat in enumerate(self.slits.spat_id):
            # Is this a good slit??
            if self.slits.mask[slit_idx] != 0:
                msgs.info('Skipping bad slit: {}'.format(slit_spat))
                self.list_of_spat_bsplines.append(bspline.bspline(None))
                continue

            msgs.info('Modeling the flat-field response for slit spat_id={}: {}/{}'.format(
                        slit_spat, slit_idx+1, self.slits.nslits))

            # Find the pixels on the initial slit
            onslit_init = slitid_img_init == slit_spat

            # Check for saturation of the flat. If there are not enough
            # pixels do not attempt a fit, and continue to the next
            # slit.
            # TODO: set the threshold to a parameter?
            good_frac = np.sum(onslit_init & (rawflat < nonlinear_counts))/np.sum(onslit_init)
            if good_frac < 0.5:
                common_message = 'To change the behavior, use the \'saturated_slits\' parameter ' \
                                 'in the \'flatfield\' parameter group; see here:\n\n' \
                                 'https://pypeit.readthedocs.io/en/latest/pypeit_par.html \n\n' \
                                 'You could also choose to use a different flat-field image ' \
                                 'for this calibration group.'
                if saturated_slits == 'crash':
                    msgs.error('Only {:4.2f}'.format(100*good_frac)
                               + '% of the pixels on slit {0} are not saturated.  '.format(slit_spat)
                               + 'Selected behavior was to crash if this occurred.  '
                               + common_message)
                elif saturated_slits == 'mask':
                    self.slits.mask[slit_idx] = self.slits.bitmask.turn_on(self.slits.mask[slit_idx], 'BADFLATCALIB')
                    msgs.warn('Only {:4.2f}'.format(100*good_frac)
                                                + '% of the pixels on slit {0} are not saturated.  '.format(slit_spat)
                              + 'Selected behavior was to mask this slit and continue with the '
                              + 'remainder of the reduction, meaning no science data will be '
                              + 'extracted from this slit.  ' + common_message)
                elif saturated_slits == 'continue':
                    self.slits.mask[slit_idx] = self.slits.bitmask.turn_on(self.slits.mask[slit_idx], 'SKIPFLATCALIB')
                    msgs.warn('Only {:4.2f}'.format(100*good_frac)
                              + '% of the pixels on slit {0} are not saturated.  '.format(slit_spat)
                              + 'Selected behavior was to simply continue, meaning no '
                              + 'field-flatting correction will be applied to this slit but '
                              + 'pypeit will attempt to extract any objects found on this slit.  '
                              + common_message)
                else:
                    # Should never get here
                    raise NotImplementedError('Unknown behavior for saturated slits: {0}'.format(
                                              saturated_slits))
                self.list_of_spat_bsplines.append(bspline.bspline(None))
                continue

            # Demand at least 10 pixels per row (on average) per degree
            # of the polynomial.
            # NOTE: This is not used until the 2D fit. Defined here to
            # be close to the definition of ``onslit``.
            if npoly is None:
                # Approximate number of pixels sampling each spatial pixel
                # for this (original) slit.
                npercol = np.fmax(np.floor(np.sum(onslit_init)/nspec),1.0)
                npoly  = np.clip(7, 1, int(np.ceil(npercol/10.)))
            
            # TODO: Always calculate the optimized `npoly` and warn the
            #  user if npoly is provided but higher than the nominal
            #  calculation?

            # Create an image with the spatial coordinates relative to the left edge of this slit
            spat_coo_init = self.slits.spatial_coordinate_image(slitidx=slit_idx, full=True, initial=True)

            # Find pixels on the padded and trimmed slit coordinates
            onslit_padded = padded_slitid_img == slit_spat
            onslit_trimmed = trimmed_slitid_img == slit_spat

            # ----------------------------------------------------------
            # Collapse the slit spatially and fit the spectral function
            # TODO: Put this stuff in a self.spectral_fit method?

            # Create the tilts image for this slit
            # TODO -- JFH Confirm the sign of this shift is correct!
            _flexure = 0. if self.wavetilts.spat_flexure is None else self.wavetilts.spat_flexure
            tilts = tracewave.fit2tilts(rawflat.shape, self.wavetilts['coeffs'][:,:,slit_idx],
                                        self.wavetilts['func2d'], spat_shift=-1*_flexure)
            # Convert the tilt image to an image with the spectral pixel index
            spec_coo = tilts * (nspec-1)

            # Only include the trimmed set of pixels in the flat-field
            # fit along the spectral direction.
            spec_gpm = onslit_trimmed & gpm_log  # & (rawflat < nonlinear_counts)
            spec_nfit = np.sum(spec_gpm)
            spec_ntot = np.sum(onslit_init)
            msgs.info('Spectral fit of flatfield for {0}/{1} '.format(spec_nfit, spec_ntot)
                      + ' pixels in the slit.')
            # Set this to a parameter?
            if spec_nfit/spec_ntot < 0.5:
                # TODO: Shouldn't this raise an exception or continue to the next slit instead?
                msgs.warn('Spectral fit includes only {:.1f}'.format(100*spec_nfit/spec_ntot)
                          + '% of the pixels on this slit.' + msgs.newline()
                          + '          Either the slit has many bad pixels or the number of '
                            'trimmed pixels is too large.')

            # Sort the pixels by their spectral coordinate.
            # TODO: Include ivar and sorted gpm in outputs?
            spec_gpm, spec_srt, spec_coo_data, spec_flat_data \
                    = flat.sorted_flat_data(flat_log, spec_coo, gpm=spec_gpm)
            # NOTE: By default np.argsort sorts the data over the last
            # axis. Just to avoid the possibility (however unlikely) of
            # spec_coo[spec_gpm] returning an array, all the arrays are
            # explicitly flattened.
            spec_ivar_data = ivar_log[spec_gpm].ravel()[spec_srt]
            spec_gpm_data = gpm_log[spec_gpm].ravel()[spec_srt]

            # Rejection threshold for spectral fit in log(image)
            # TODO: Make this a parameter?
            logrej = 0.5

            # Fit the spectral direction of the blaze.
            # TODO: Figure out how to deal with the fits going crazy at
            #  the edges of the chip in spec direction
            # TODO: Can we add defaults to bspline_profile so that we
            #  don't have to instantiate invvar and profile_basis
            spec_bspl, spec_gpm_fit, spec_flat_fit, _, exit_status \
                    = utils.bspline_profile(spec_coo_data, spec_flat_data, spec_ivar_data,
                                            np.ones_like(spec_coo_data), ingpm=spec_gpm_data,
                                            nord=4, upper=logrej, lower=logrej,
                                            kwargs_bspline={'bkspace': spec_samp_fine},
                                            kwargs_reject={'groupbadpix': True, 'maxrej': 5})

            if exit_status > 1:
                # TODO -- MAKE A FUNCTION
                msgs.warn('Flat-field spectral response bspline fit failed!  Not flat-fielding '
                          'slit {0} and continuing!'.format(slit_spat))
                self.slits.mask[slit_idx] = self.slits.bitmask.turn_on(self.slits.mask[slit_idx], 'BADFLATCALIB')
                self.list_of_spat_bsplines.append(bspline.bspline(None))
                continue

            # Debugging/checking spectral fit
            if debug:
                utils.bspline_qa(spec_coo_data, spec_flat_data, spec_bspl, spec_gpm_fit,
                                 spec_flat_fit, xlabel='Spectral Pixel', ylabel='log(flat counts)',
                                 title='Spectral Fit for slit={:d}'.format(slit_spat))

            if sticky:
                # Add rejected pixels to gpm
                gpm[spec_gpm] = (spec_gpm_fit & spec_gpm_data)[np.argsort(spec_srt)]

            # Construct the model of the flat-field spectral shape
            # including padding on either side of the slit.
            spec_model[...] = 1.
            spec_model[onslit_padded] = np.exp(spec_bspl.value(spec_coo[onslit_padded])[0])
            # ----------------------------------------------------------

            # ----------------------------------------------------------
            # To fit the spatial response, first normalize out the
            # spectral response, and then collapse the slit spectrally.

            # Normalize out the spectral shape of the flat
            norm_spec[...] = 1.
            norm_spec[onslit_padded] = rawflat[onslit_padded] \
                                            / np.fmax(spec_model[onslit_padded],1.0)

            # Find pixels fot fit in the spatial direction:
            #   - Fit pixels in the padded slit that haven't been masked
            #     by the BPM
            spat_gpm = onslit_padded & gpm #& (rawflat < nonlinear_counts)
            #   - Fit pixels with non-zero flux and less than 70% above
            #     the average spectral profile.
            spat_gpm &= (norm_spec > 0.0) & (norm_spec < 1.7)
            #   - Determine maximum counts in median filtered flat
            #     spectrum model.
            spec_interp = interpolate.interp1d(spec_coo_data, spec_flat_fit, kind='linear',
                                               assume_sorted=True, bounds_error=False,
                                               fill_value=-np.inf)
            spec_sm = utils.fast_running_median(np.exp(spec_interp(np.arange(nspec))),
                                                np.fmax(np.ceil(0.10*nspec).astype(int),10))
            #   - Only fit pixels with at least values > 10% of this maximum and no less than 1.
            spat_gpm &= (spec_model > 0.1*np.amax(spec_sm)) & (spec_model > 1.0)

            # Report
            spat_nfit = np.sum(spat_gpm)
            spat_ntot = np.sum(onslit_padded)
            msgs.info('Spatial fit of flatfield for {0}/{1} '.format(spat_nfit, spat_ntot)
                      + ' pixels in the slit.')
            if spat_nfit/spat_ntot < 0.5:
                # TODO: Shouldn't this raise an exception or continue to the next slit instead?
                msgs.warn('Spatial fit includes only {:.1f}'.format(100*spat_nfit/spat_ntot)
                          + '% of the pixels on this slit.' + msgs.newline()
                          + '          Either the slit has many bad pixels, the model of the '
                          'spectral shape is poor, or the illumination profile is very irregular.')

            # First fit -- With initial slits
            exit_status, spat_coo_data,  spat_flat_data, spat_bspl, spat_gpm_fit, \
                spat_flat_fit, spat_flat_data_raw \
                        = self.spatial_fit(norm_spec, spat_coo_init, median_slit_widths[slit_idx],
                                           spat_gpm, gpm, debug=debug)

            if tweak_slits:
                # TODO: Should the tweak be based on the bspline fit?
                # TODO: Will this break if
                left_thresh, left_shift, self.slits.left_tweak[:,slit_idx], right_thresh, \
                    right_shift, self.slits.right_tweak[:,slit_idx] \
                        = flat.tweak_slit_edges(self.slits.left_init[:,slit_idx],
                                                self.slits.right_init[:,slit_idx],
                                                spat_coo_data, spat_flat_data,
                                                thresh=tweak_slits_thresh,
                                                maxfrac=tweak_slits_maxfrac, debug=debug)
                # TODO: Because the padding doesn't consider adjacent
                #  slits, calling slit_img for individual slits can be
                #  different from the result when you construct the
                #  image for all slits. Fix this...

                # Update the onslit mask
                _slitid_img = self.slits.slit_img(slitidx=slit_idx, initial=False)
                onslit_tweak = _slitid_img == slit_spat
                spat_coo_tweak = self.slits.spatial_coordinate_image(slitidx=slit_idx,
                                                               slitid_img=_slitid_img)

                # Construct the empirical illumination profile
                # TODO This is extremely inefficient, because we only need to re-fit the illumflat, but
                #  spatial_fit does both the reconstruction of the illumination function and the bspline fitting.
                #  Only the b-spline fitting needs be reddone with the new tweaked spatial coordinates, so that would
                #  save a ton of runtime. It is not a trivial change becauase the coords are sorted, etc.
                exit_status, spat_coo_data, spat_flat_data, spat_bspl, spat_gpm_fit, \
                    spat_flat_fit, spat_flat_data_raw = self.spatial_fit(
                    norm_spec, spat_coo_tweak, median_slit_widths[slit_idx], spat_gpm, gpm, debug=False)

                spat_coo_final = spat_coo_tweak
            else:
                _slitid_img = slitid_img_init
                spat_coo_final = spat_coo_init
                onslit_tweak = onslit_init

            # Add an approximate pixel axis at the top
            if debug:
                # TODO: Move this into a qa plot that gets saved
                ax = utils.bspline_qa(spat_coo_data, spat_flat_data, spat_bspl, spat_gpm_fit,
                                      spat_flat_fit, show=False)
                ax.scatter(spat_coo_data, spat_flat_data_raw, marker='.', s=1, zorder=0, color='k',
                           label='raw data')
                # Force the center of the slit to be at the center of the plot for the hline
                ax.set_xlim(-0.1,1.1)
                ax.axvline(0.0, color='lightgreen', linestyle=':', linewidth=2.0,
                           label='original left edge', zorder=8)
                ax.axvline(1.0, color='red', linestyle=':', linewidth=2.0,
                           label='original right edge', zorder=8)
                if tweak_slits and left_shift > 0:
                    label = 'threshold = {:5.2f}'.format(tweak_slits_thresh) \
                                + ' % of max of left illumprofile'
                    ax.axhline(left_thresh, xmax=0.5, color='lightgreen', linewidth=3.0,
                               label=label, zorder=10)
                    ax.axvline(left_shift, color='lightgreen', linestyle='--', linewidth=3.0,
                               label='tweaked left edge', zorder=11)
                if tweak_slits and right_shift > 0:
                    label = 'threshold = {:5.2f}'.format(tweak_slits_thresh) \
                                + ' % of max of right illumprofile'
                    ax.axhline(right_thresh, xmin=0.5, color='red', linewidth=3.0, label=label,
                               zorder=10)
                    ax.axvline(1-right_shift, color='red', linestyle='--', linewidth=3.0,
                               label='tweaked right edge', zorder=20)
                ax.legend()
                ax.set_xlabel('Normalized Slit Position')
                ax.set_ylabel('Normflat Spatial Profile')
                ax.set_title('Illumination Function Fit for slit={:d}'.format(slit_spat))
                plt.show()

            # ----------------------------------------------------------
            # Construct the illumination profile with the tweaked edges
            # of the slit
            if exit_status <= 1:
                # TODO -- JFH -- Check this is ok for flexure!!
                self.msillumflat[onslit_tweak] = spat_bspl.value(spat_coo_final[onslit_tweak])[0]
                self.list_of_spat_bsplines.append(spat_bspl)
            else:
                # Save the nada
                msgs.warn('Slit illumination profile bspline fit failed!  Spatial profile not '
                          'included in flat-field model for slit {0}!'.format(slit_spat))
                self.slits.mask[slit_idx] = self.slits.bitmask.turn_on(self.slits.mask[slit_idx], 'BADFLATCALIB')
                self.list_of_spat_bsplines.append(bspline.bspline(None))
                continue

            # ----------------------------------------------------------
            # Fit the 2D residuals of the 1D spectral and spatial fits.
            msgs.info('Performing 2D illumination + scattered light flat field fit')

            # Construct the spectrally and spatially normalized flat
            norm_spec_spat[...] = 1.
            norm_spec_spat[onslit_tweak] = rawflat[onslit_tweak] / np.fmax(spec_model[onslit_tweak], 1.0) \
                                                    / np.fmax(self.msillumflat[onslit_tweak], 0.01)

            # Sort the pixels by their spectral coordinate. The mask
            # uses the nominal padding defined by the slits object.
            twod_gpm, twod_srt, twod_spec_coo_data, twod_flat_data \
                    = flat.sorted_flat_data(norm_spec_spat, spec_coo, gpm=onslit_tweak)
            # Also apply the sorting to the spatial coordinates
            twod_spat_coo_data = spat_coo_final[twod_gpm].ravel()[twod_srt]
            # TODO: Reset back to origin gpm if sticky is true?
            twod_gpm_data = gpm[twod_gpm].ravel()[twod_srt]
            # Only fit data with less than 30% variations
            # TODO: Make 30% a parameter?
            twod_gpm_data &= np.absolute(twod_flat_data - 1) < 0.3
            # Here we ignore the formal photon counting errors and
            # simply assume that a typical error per pixel. This guess
            # is somewhat aribtrary. We then set the rejection
            # threshold with sigrej_twod
            # TODO: Make twod_sig and twod_sigrej parameters?
            twod_sig = 0.01
            twod_ivar_data = twod_gpm_data.astype(float)/(twod_sig**2)
            twod_sigrej = 4.0

            poly_basis = basis.fpoly(2.0*twod_spat_coo_data - 1.0, npoly)

            # Perform the full 2d fit
            twod_bspl, twod_gpm_fit, twod_flat_fit, _ , exit_status \
                    = utils.bspline_profile(twod_spec_coo_data, twod_flat_data, twod_ivar_data,
                                            poly_basis, ingpm=twod_gpm_data, nord=4,
                                            upper=twod_sigrej, lower=twod_sigrej,
                                            kwargs_bspline={'bkspace': spec_samp_coarse},
                                            kwargs_reject={'groupbadpix': True, 'maxrej': 10})
            if debug:
                # TODO: Make a plot that shows the residuals in the 2D
                # image
                resid = twod_flat_data - twod_flat_fit
                goodpix = twod_gpm_fit & twod_gpm_data
                badpix = np.invert(twod_gpm_fit) & twod_gpm_data

                plt.clf()
                ax = plt.gca()
                ax.plot(twod_spec_coo_data[goodpix], resid[goodpix], color='k', marker='o',
                        markersize=0.2, mfc='k', fillstyle='full', linestyle='None',
                        label='good points')
                ax.plot(twod_spec_coo_data[badpix], resid[badpix], color='red', marker='+',
                        markersize=0.5, mfc='red', fillstyle='full', linestyle='None',
                        label='masked')
                ax.axhline(twod_sigrej*twod_sig, color='lawngreen', linestyle='--',
                           label='rejection thresholds', zorder=10, linewidth=2.0)
                ax.axhline(-twod_sigrej*twod_sig, color='lawngreen', linestyle='--', zorder=10,
                           linewidth=2.0)
#                ax.set_ylim(-0.05, 0.05)
                ax.legend()
                ax.set_xlabel('Spectral Pixel')
                ax.set_ylabel('Residuals from pixelflat 2-d fit')
                ax.set_title('Spectral Residuals for slit={:d}'.format(slit_spat))
                plt.show()

                plt.clf()
                ax = plt.gca()
                ax.plot(twod_spat_coo_data[goodpix], resid[goodpix], color='k', marker='o',
                        markersize=0.2, mfc='k', fillstyle='full', linestyle='None',
                        label='good points')
                ax.plot(twod_spat_coo_data[badpix], resid[badpix], color='red', marker='+',
                        markersize=0.5, mfc='red', fillstyle='full', linestyle='None',
                        label='masked')
                ax.axhline(twod_sigrej*twod_sig, color='lawngreen', linestyle='--',
                           label='rejection thresholds', zorder=10, linewidth=2.0)
                ax.axhline(-twod_sigrej*twod_sig, color='lawngreen', linestyle='--', zorder=10,
                           linewidth=2.0)
#                ax.set_ylim((-0.05, 0.05))
#                ax.set_xlim(-0.02, 1.02)
                ax.legend()
                ax.set_xlabel('Normalized Slit Position')
                ax.set_ylabel('Residuals from pixelflat 2-d fit')
                ax.set_title('Spatial Residuals for slit={:d}'.format(slit_spat))
                plt.show()

            # Save the 2D residual model
            twod_model[...] = 1.
            if exit_status > 1:
                msgs.warn('Two-dimensional fit to flat-field data failed!  No higher order '
                          'flat-field corrections included in model of slit {0}!'.format(slit_spat))
            else:
                twod_model[twod_gpm] = twod_flat_fit[np.argsort(twod_srt)]

            # Construct the full flat-field model
            # TODO: Why is the 0.05 here for the illumflat compared to the 0.01 above?
            self.flat_model[onslit_tweak] = twod_model[onslit_tweak] \
                                        * np.fmax(self.msillumflat[onslit_tweak], 0.05) \
                                        * np.fmax(spec_model[onslit_tweak], 1.0)

            # Construct the pixel flat
            #self.mspixelflat[onslit] = rawflat[onslit]/self.flat_model[onslit]
            #self.mspixelflat[onslit_tweak] = 1.
            #trimmed_slitid_img_anew = self.slits.slit_img(pad=-trim, slitidx=slit_idx)
            #onslit_trimmed_anew = trimmed_slitid_img_anew == slit_spat
            self.mspixelflat[onslit_tweak] = rawflat[onslit_tweak]/self.flat_model[onslit_tweak]
            # TODO: Add some code here to treat the edges and places where fits
            #  go bad?

        # Set the pixelflat to 1.0 wherever the flat was nonlinear
        self.mspixelflat[rawflat >= nonlinear_counts] = 1.0
        # Set the pixelflat to 1.0 within trim pixels of all the slit edges
        trimmed_slitid_img_new = self.slits.slit_img(pad=-trim, initial=False)
        tweaked_slitid_img = self.slits.slit_img(initial=False)
        self.mspixelflat[(trimmed_slitid_img_new < 0) & (tweaked_slitid_img > 0)] = 1.0


        # Do not apply pixelflat field corrections that are greater than
        # 100% to avoid creating edge effects, etc.
        self.mspixelflat = np.clip(self.mspixelflat, 0.5, 2.0)