def test_auto_load(self):


        traj = Trajectory(name='Test', filename=make_temp_file('autoload.hdf5'))

        traj.v_auto_load = True

        traj.f_add_result('I.am.$.a.mean.resu', 42, comment='Test')

        traj.f_add_derived_parameter('ffa', 42)

        traj.f_store()

        ffa=traj.f_get('ffa')
        ffa.f_unlock()
        ffa.f_empty()

        self.assertTrue(ffa.f_is_empty())

        traj.f_remove_child('results', recursive=True)

        # check auto load
        val = traj.res.I.am.crun.a.mean.resu

        self.assertTrue(val==42)

        val = traj.ffa

        self.assertTrue(val==42)

        with self.assertRaises(Exception):
            traj.kdsfdsf
    def test_wildcard_search(self):

        traj = Trajectory(name='Test', filename=make_temp_file('wilcard.hdf5'))

        traj.f_add_parameter('expl', 2)
        traj.f_explore({'expl':[1,2,3,4]})

        traj.f_add_result('wc2test.$.hhh', 333)
        traj.f_add_leaf('results.wctest.run_00000000.jjj', 42)
        traj.f_add_result('results.wctest.run_00000001.jjj', 43)

        traj.v_as_run = 1

        self.assertTrue(traj.results.wctest['$'].jjj==43)
        self.assertTrue(traj.results.wc2test.crun.hhh==333)

        traj.f_store()

        traj.f_remove_child('results', recursive=True)

        traj.v_auto_load = True

        self.assertTrue(traj.results.wctest['$'].jjj==43)
        self.assertTrue(traj.results.wc2test.crun.hhh==333)

        traj.f_remove_child('results', recursive=True)

        traj.v_auto_load = True

        self.assertTrue(traj.results.wctest[-2].jjj==43)
        self.assertTrue(traj.results.wc2test[-2].hhh==333)

        traj.f_remove_child('results', recursive=True)

        traj.v_auto_load = True

        self.assertTrue(traj.results.wctest[1].jjj==43)
        self.assertTrue(traj.results.wc2test[-1].hhh==333)
def load_trajectory(fname):

    tr = Trajectory(name='tr1',
                    add_time=False,
                    filename=fname,
                    dynamic_imports=[Brian2MonitorResult, Brian2Parameter])

    # pypet.pypetconstants.LOAD_NOTHING  --> 0
    # pypet.pypetconstants.LOAD_SKELETON --> 1
    # pypet.pypetconstants.LOAD_DATA     --> 2
    tr.f_load(load_parameters=2, load_derived_parameters=2, load_results=1)
    tr.v_auto_load = True

    return tr
    def test_migrations(self):

        traj = Trajectory(name='Test', filename=make_temp_file('migrate.hdf5'))

        traj.f_add_result('I.am.a.mean.resu', 42, comment='Test')
        traj.f_add_derived_parameter('ffa', 42)

        traj.f_store()

        new_file = make_temp_file('migrate2.hdf5')
        traj.f_migrate(new_filename=new_file)

        traj.f_store()

        new_traj = Trajectory()

        new_traj.f_migrate(new_name=traj.v_name, new_filename=new_file, in_store=True)

        new_traj.v_auto_load=True

        self.assertTrue(new_traj.results.I.am.a.mean.resu == 42)
    def test_f_iter_runs_auto_load(self):

         ###Explore
        self.explore(self.traj)

        results = self.env.f_run(multiply)
        self.are_results_in_order(results)
        traj = self.traj
        self.assertTrue(len(traj) == len(list(self.explore_dict.values())[0]))

        self.traj.f_load_skeleton()
        self.traj.f_load_items(self.traj.f_to_dict().keys(), only_empties=True)
        self.check_if_z_is_correct(traj)

        newtraj = Trajectory()
        newtraj.v_storage_service=HDF5StorageService(filename=self.filename)
        newtraj.f_load(name=self.traj.v_name, index=None, as_new=False, load_data=0)
        newtraj.v_auto_load = True

        newtraj.par.f_load_child('y', load_data=1)

        for idx, run_name in enumerate(self.traj.f_iter_runs()):
            newtraj.v_crun=run_name
            self.traj.v_idx = idx
            newtraj.v_idx = idx
            nameset = set((x.v_name for x in traj.f_iter_nodes(predicate=(idx,))))
            self.assertTrue('run_%08d' % (idx+1) not in nameset)
            self.assertTrue('run_%08d' % idx in nameset)
            self.assertTrue(traj.v_crun == run_name)
            self.assertTrue(newtraj.res.runs.crun.z==newtraj.par.x*newtraj.par.y,' z != x*y: %s != %s * %s' %
                                                  (str(newtraj.crun.z),str(newtraj.x),str(newtraj.y)))


        traj = self.traj
        self.assertTrue(traj.v_idx == -1)
        self.assertTrue(traj.v_crun is None)
        self.assertTrue(traj.v_crun_ == pypetconstants.RUN_NAME_DUMMY)
        self.assertTrue(newtraj.v_idx == idx)
    def test_f_iter_runs_auto_load(self):

         ###Explore
        self.explore(self.traj)

        results = self.env.f_run(multiply)
        self.are_results_in_order(results)
        traj = self.traj
        self.assertTrue(len(traj) == len(compat.listvalues(self.explore_dict)[0]))

        self.traj.f_load_skeleton()
        self.traj.f_load_items(self.traj.f_to_dict().keys(), only_empties=True)
        self.check_if_z_is_correct(traj)

        newtraj = Trajectory()
        newtraj.v_storage_service=HDF5StorageService(filename=self.filename)
        newtraj.f_load(name=self.traj.v_name, index=None, as_new=False, load_data=0)
        newtraj.v_auto_load = True

        newtraj.par.f_load_child('y', load_data=1)

        for idx, run_name in enumerate(self.traj.f_iter_runs()):
            newtraj.v_crun=run_name
            self.traj.v_idx = idx
            newtraj.v_idx = idx
            nameset = set((x.v_name for x in traj.f_iter_nodes(predicate=(idx,))))
            self.assertTrue('run_%08d' % (idx+1) not in nameset)
            self.assertTrue('run_%08d' % idx in nameset)
            self.assertTrue(traj.v_crun == run_name)
            self.assertTrue(newtraj.res.runs.crun.z==newtraj.par.x*newtraj.par.y,' z != x*y: %s != %s * %s' %
                                                  (str(newtraj.crun.z),str(newtraj.x),str(newtraj.y)))


        traj = self.traj
        self.assertTrue(traj.v_idx == -1)
        self.assertTrue(traj.v_crun is None)
        self.assertTrue(traj.v_crun_ == pypetconstants.RUN_NAME_DUMMY)
        self.assertTrue(newtraj.v_idx == idx)
Exemple #7
0
def main():

    # This time we don't need an environment since we just going to look
    # at data in the trajectory
    traj = Trajectory('FiringRate', add_time=False)

    # Let's load the trajectory from the file
    # Only load the parameters, we will load the results on the fly as we need them
    traj.f_load(filename='./hdf5/FiringRate.hdf5', load_parameters=2,
                load_results=0, load_derived_parameters=0)

    # We'll simply use auto loading so all data will be loaded when needed.
    traj.v_auto_load = True

    rates_frame = traj.res.summary.firing_rates.rates_frame
    # Here we load the data automatically on the fly

    plt.figure()
    plt.subplot(2,1,1)
    #Let's iterate through the columns and plot the different firing rates :
    for tau_ref, I_col in rates_frame.iteritems():
        plt.plot(I_col.index, I_col, label='Avg. Rate for tau_ref=%s' % str(tau_ref))

    # Label the plot
    plt.xlabel('I')
    plt.ylabel('f[Hz]')
    plt.title('Firing as a function of input current `I`')
    plt.legend()

    # Also let's plot an example run, how about run 13 ?
    example_run = 13

    traj.v_idx = example_run # We make the trajectory behave as a single run container.
    # This short statement has two major effects:
    # a) all explored parameters are set to the value of run 13,
    # b) if there are tree nodes with names other than the current run aka `run_00000013`
    # they are simply ignored, if we use the `$` sign or the `crun` statement,
    # these are translated into `run_00000013`.

    # Get the example data
    example_I = traj.I
    example_tau_ref = traj.tau_ref
    example_V = traj.results.neuron.crun.V # Here crun stands for run_00000013

    # We need the time step...
    dt = traj.dt
    # ...to create an x-axis for the plot
    dt_array = [irun * dt for irun in range(len(example_V))]

    # And plot the development of V over time,
    # Since this is rather repetitive, we only
    # plot the first eighth of it.
    plt.subplot(2,1,2)
    plt.plot(dt_array, example_V)
    plt.xlim((0, dt*len(example_V)/8))

    # Label the axis
    plt.xlabel('t[ms]')
    plt.ylabel('V')
    plt.title('Example of development of V for I=%s, tau_ref=%s in run %d' %
              (str(example_I), str(example_tau_ref), traj.v_idx))

    # And let's take a look at it
    plt.show()

    # Finally revoke the `traj.v_idx=13` statement and set everything back to normal.
    # Since our analysis is done here, we could skip that, but it is always a good idea
    # to do that.
    traj.f_restore_default()