def test_cdar_example(): beta = 0.95 df = get_data() mu = expected_returns.mean_historical_return(df) historical_rets = expected_returns.returns_from_prices(df).dropna() cd = EfficientCDaR(mu, historical_rets, beta=beta) w = cd.min_cdar() assert isinstance(w, dict) assert set(w.keys()) == set(cd.tickers) np.testing.assert_almost_equal(cd.weights.sum(), 1) assert all([i >= -1e-5 for i in w.values()]) np.testing.assert_allclose( cd.portfolio_performance(), (0.21502, 0.056433), rtol=1e-4, atol=1e-4, ) cdar = cd.portfolio_performance()[1] portfolio_rets = historical_rets @ cd.weights cum_rets = portfolio_rets.cumsum(0) drawdown = cum_rets.cummax() - cum_rets dar_hist = drawdown.quantile(beta) cdar_hist = drawdown[drawdown > dar_hist].mean() np.testing.assert_almost_equal(cdar_hist, cdar, decimal=3)
def test_efficient_risk_market_neutral(): cd = EfficientCDaR(*setup_efficient_cdar(data_only=True), weight_bounds=(-1, 1)) w = cd.efficient_risk(0.025, market_neutral=True) assert isinstance(w, dict) assert set(w.keys()) == set(cd.tickers) np.testing.assert_almost_equal(cd.weights.sum(), 0) assert (cd.weights < 1).all() and (cd.weights > -1).all() np.testing.assert_allclose( cd.portfolio_performance(), (0.219306, 0.025), rtol=1e-4, atol=1e-4, )
def test_cdar_example_short(): df = get_data() mu = expected_returns.mean_historical_return(df) historical_rets = expected_returns.returns_from_prices(df).dropna() cd = EfficientCDaR( mu, historical_rets, weight_bounds=(-1, 1), ) w = cd.efficient_return(0.2, market_neutral=True) assert isinstance(w, dict) assert set(w.keys()) == set(cd.tickers) np.testing.assert_almost_equal(cd.weights.sum(), 0) np.testing.assert_allclose( cd.portfolio_performance(), (0.2, 0.047152), rtol=1e-4, atol=1e-4, )
def test_efficient_return_short(): cd = EfficientCDaR(*setup_efficient_cdar(data_only=True), weight_bounds=(-3.0, 3.0)) w = cd.efficient_return(0.28) assert isinstance(w, dict) assert set(w.keys()) == set(cd.tickers) np.testing.assert_almost_equal(cd.weights.sum(), 1) np.testing.assert_allclose( cd.portfolio_performance(), (0.28, 0.045999), rtol=1e-4, atol=1e-4, ) cdar = cd.portfolio_performance()[1] ef_long_only = EfficientCDaR(*setup_efficient_cdar(data_only=True), weight_bounds=(0.0, 1.0)) ef_long_only.efficient_return(0.26) long_only_cdar = ef_long_only.portfolio_performance()[1] assert long_only_cdar > cdar
def test_es_return_sample(): df = get_data() mu = expected_returns.mean_historical_return(df) S = risk_models.sample_cov(df) # Generate a 1y sample of daily data np.random.seed(0) mu_daily = (1 + mu)**(1 / 252) - 1 S_daily = S / 252 sample_rets = pd.DataFrame(np.random.multivariate_normal( mu_daily, S_daily, 300), columns=mu.index) cd = EfficientCDaR(mu, sample_rets) w = cd.efficient_return(0.2) assert isinstance(w, dict) assert set(w.keys()) == set(cd.tickers) np.testing.assert_almost_equal(cd.weights.sum(), 1) assert all([i >= -1e-5 for i in w.values()]) np.testing.assert_allclose( cd.portfolio_performance(), (0.20, 0.045414), rtol=1e-4, atol=1e-4, ) # Cover verbose param case np.testing.assert_equal(cd.portfolio_performance(verbose=True), cd.portfolio_performance())
def test_cdar_errors(): df = get_data() mu = expected_returns.mean_historical_return(df) historical_rets = expected_returns.returns_from_prices(df) with pytest.warns(UserWarning): EfficientCDaR(mu, historical_rets) historical_rets = historical_rets.dropna(axis=0, how="any") assert EfficientCDaR(mu, historical_rets) cd = setup_efficient_cdar() with pytest.raises(NotImplementedError): cd.min_volatility() with pytest.raises(NotImplementedError): cd.max_sharpe() with pytest.raises(NotImplementedError): cd.max_quadratic_utility() with pytest.raises(ValueError): # Beta must be between 0 and 1 cd = EfficientCDaR(mu, historical_rets, 1) with pytest.raises(OptimizationError): # Must be <= max expected return cd = EfficientCDaR(mu, historical_rets) cd.efficient_return(target_return=np.abs(mu).max() + 0.01) with pytest.raises(TypeError): # list not supported. EfficientCDaR(mu, historical_rets.to_numpy().tolist()) historical_rets = historical_rets.iloc[:, :-1] with pytest.raises(ValueError): EfficientCDaR(mu, historical_rets)
def test_cdar_example_weekly(): beta = 0.90 df = get_data() df = df.resample("W").first() mu = expected_returns.mean_historical_return(df, frequency=52) historical_rets = expected_returns.returns_from_prices(df).dropna() cd = EfficientCDaR(mu, historical_rets, beta=beta) cd.efficient_return(0.21) np.testing.assert_allclose( cd.portfolio_performance(), (0.21, 0.045085), rtol=1e-4, atol=1e-4, ) cdar = cd.portfolio_performance()[1] portfolio_rets = historical_rets @ cd.weights cum_rets = portfolio_rets.cumsum(0) drawdown = cum_rets.cummax() - cum_rets dar_hist = drawdown.quantile(beta) cdar_hist = drawdown[drawdown > dar_hist].mean() np.testing.assert_almost_equal(cdar_hist, cdar, decimal=3)