Nt = np.ones(K) * 4 Ns = np.array([2, 2, 2]) # np.ones(K) * 2 multiuserchannel = MultiUserChannelMatrix() modulator = PSK(4) SNR = 40 noise_var = 1 / dB2Linear(SNR) print("SNR: {0}".format(SNR)) print("noise_var: {0}".format(noise_var)) multiuserchannel.randomize(Nr, Nt, K) multiuserchannel.noise_var = noise_var ia_solver = algorithms.AlternatingMinIASolver(multiuserchannel) ia_solver2 = algorithms.MMSEIASolver(multiuserchannel) ia_solver3 = algorithms.MaxSinrIASolver(multiuserchannel) ia_solver4 = algorithms.AlternatingMinIASolver(multiuserchannel) # ia_solver.initialize_with_closed_form = True # ia_solver2.initialize_with_closed_form = True # ia_solver3.initialize_with_closed_form = True ia_solver.randomizeF(Ns) ia_solver.max_iterations = 400 ia_solver.solve(Ns) ia_solver2.randomizeF(Ns) ia_solver2.max_iterations = 100 ia_solver2.solve(Ns)
def main(): """Main function. """ K = 3 Nr = 4 Nt = 4 Ns = 2 SNR = 30.0 P = 1.0 # Dependent parameters noise_var = 1 / dB2Linear(SNR) RepMax = 1 mmse_sinrs = np.empty([RepMax, K, Ns], dtype=float) max_sinr_sinrs = np.empty([RepMax, K, Ns], dtype=float) mmse_capacity = np.empty(RepMax, dtype=float) max_sinr_capacity = np.empty(RepMax, dtype=float) pbar = ProgressbarText(RepMax, message="Simulating for SNR: {0}".format(SNR)) for rep in range(RepMax): # Creat the channel multiUserChannel = pyphysim.channels.multiuser.MultiUserChannelMatrix() multiUserChannel.randomize(Nr, Nt, K) multiUserChannel.noise_var = noise_var # Creat the IA solver object mmse_ia_solver = algorithms.MMSEIASolver(multiUserChannel) max_sinr_ia_solver = algorithms.MaxSinrIASolver(multiUserChannel) mmse_ia_solver.randomizeF(Ns, P) mmse_ia_solver.initialize_with = 'fix' max_sinr_ia_solver.initialize_with = 'fix' # noinspection PyProtectedMember max_sinr_ia_solver._F = mmse_ia_solver._F #mmse_ia_solver.initialize_with = 'fix' # We wouldn't need to explicitly set ia_solver.noise_var # variable if the multiUserChannel object had the correct value at # this point. # mmse_ia_solver.noise_var = noise_var mmse_ia_solver.max_iterations = 200 mmse_ia_solver.solve(Ns) # max_sinr_ia_solver.noise_var = noise_var max_sinr_ia_solver.max_iterations = 200 max_sinr_ia_solver.solve(Ns) mmse_sinrs[rep] = list(map(linear2dB, mmse_ia_solver.calc_SINR())) max_sinr_sinrs[rep] = list(map(linear2dB, max_sinr_ia_solver.calc_SINR())) mmse_capacity[rep] = np.sum(calc_capacity(mmse_ia_solver.calc_SINR())) max_sinr_capacity[rep] = np.sum(calc_capacity(max_sinr_ia_solver.calc_SINR())) # print "MMSE Alt. SINRs:\n{0}".format(np.vstack(mmse_sinrs[rep])) # print "Max SINR Alg. SINRs:\n{0}".format(np.vstack(max_sinr_sinrs[rep])) # print "MMSE Alt. Capacity: {0}".format(np.sum(calc_capacity(mmse_sinrs[rep]))) # print "Max SINR Alg. Capacity: {0}".format(np.sum(calc_capacity(max_sinr_sinrs[rep]))) # print pbar.progress(rep) print("MMSE Average SINRs:\n{0}".format(mmse_sinrs.mean(0))) print("Max SINR Average SINRs:\n{0}".format(max_sinr_sinrs.mean(0))) print("MMSE Average Capacity: {0}".format(mmse_capacity.mean())) print("Max SINR Average Capacity: {0}".format(max_sinr_capacity.mean())) print("\nEnd!")
def __init__(self, default_config_file, read_command_line_args=True): """ Constructor of the IASimulationRunner class. """ spec = """[Grid] cell_radius=float(min=0.01, default=1.0) num_cells=integer(min=3,default=3) num_clusters=integer(min=1,default=1) [Scenario] NSymbs=integer(min=10, max=1000000, default=200) SNR=real_numpy_array(min=-50, max=100, default=0:5:31) M=integer(min=4, max=512, default=4) modulator=option('QPSK', 'PSK', 'QAM', 'BPSK', default="PSK") Nr=integer_scalar_or_integer_numpy_array_check(min=2,default=3) Nt=integer_scalar_or_integer_numpy_array_check(min=2,default=3) Ns=integer_scalar_or_integer_numpy_array_check(min=1,default=3) N0=float(default=-116.4) scenario=string_list(default=list('Random', 'NoPathLoss')) [IA Algorithm] max_iterations=integer(min=1, default=120) initialize_with=string_list(default=list('random')) stream_sel_method=string_list(default=list('greedy', 'brute')) [General] rep_max=integer(min=1, default=2000) max_bit_errors=integer(min=1, default=3000) unpacked_parameters=string_list(default=list('SNR','stream_sel_method','scenario','initialize_with')) """.split("\n") SimulationRunner.__init__(self, default_config_file, spec, read_command_line_args) # xxxxxxxxxx General Parameters xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # Maximum number of repetitions for each unpacked parameters set self.rep_max = self.params['rep_max'] # # max_bit_errors is used in the _keep_going method to stop the # # simulation earlier if possible. We stop the simulation if the # # accumulated number of bit errors becomes greater then 5% of the # # total number of simulated bits # self.max_bit_errors = self.params['max_bit_errors'] # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Channel and Path Loss Parameters xxxxxxxxxxxxxxxxxxxxx # Create the channel object self.multiUserChannel = multiuser.MultiUserChannelMatrix() # Create the Path loss object self.path_loss_obj = pathloss.PathLoss3GPP1() # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx RandomState objects seeds xxxxxxxxxxxxxxxxxxxxxxxxxxxx # This is only useful to reproduce a simulation for debugging # purposed self.channel_seed = None # 22522 self.noise_seed = None # 4445 self.data_gen_seed = np.random.randint(10000) # 2105 # self.multiUserChannel.set_channel_seed(self.channel_seed) self.multiUserChannel.set_noise_seed(self.noise_seed) self.data_RS = np.random.RandomState(self.data_gen_seed) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Create the modulator object xxxxxxxxxxxxxxxxxxxxxxxxxx M = self.params['M'] modulator_options = { 'PSK': fundamental.PSK, 'QPSK': fundamental.QPSK, 'QAM': fundamental.QAM, 'BPSK': fundamental.BPSK } self.modulator = modulator_options[self.params['modulator']](M) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Progress Bar xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # This can be either 'screen' or 'file'. If it is 'file' then the # progressbar will write the progress to a file with appropriated # filename self.progress_output_type = 'screen' # Set the progressbar message self.progressbar_message = "SNR: {{SNR}}".format(self.modulator.name) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Dependent parameters (don't change these) xxxxxxxxxxxx # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # Cell Grid self.cell_grid = cell.Grid() self.cell_grid.create_clusters(self.params['num_clusters'], self.params['num_cells'], self.params['cell_radius']) # Note that the Noise variance will be set in the # _on_simulate_current_params_start method. In the NoPathLoss # scenario it will be set as 1.0 regardless of the value of # params['N0'] to avoid problems in the IA algorithms. In the other # scenarios it will be set to self.params['N0']. # # In any case the transmit power will be calculated accordingly in # the _run_simulation method and the simulation results will still # be correct. self.noise_var = None # Linear path loss from cell center to cell border. self._path_loss_border = self.path_loss_obj.calc_path_loss( self.params['cell_radius']) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # TODO: Move code below to the _on_simulate_current_params_start # method # xxxxxxxxxx Interference Alignment objects xxxxxxxxxxxxxxxxxxxxxxx # Create the basic IA Solver object self.ia_solver = algorithms.MMSEIASolver(self.multiUserChannel) # This will be created in the _on_simulate_current_params_start # method. The class of self.ia_top_object will depend on the value # of the 'stream_sel_method' parameter self.ia_top_object = None