Exemple #1
0
def create_system(series):
    names, units = np.transpose(
        [split_name_and_units(name) for name in series.index])
    return [
        pif.System(name, uid=url_friendly(lambda x: x)(name))
        for name, unit, value in zip(names, units, series.values)
    ]
Exemple #2
0
    def to_system(row):
        def url_friendly(name):
            return re.sub(r"\W", "_", name)

        def wolf_contact():
            return pif.Person(name='JP H. Paul',
                              email='*****@*****.**',
                              tags='Lincoln Electric (Wolf Robotics)')

        def cmu_contact():
            return pif.Person(name='Anthony Rollett',
                              email='*****@*****.**',
                              tags='Carnegie Mellon University')

        def mines_contact():
            return pif.Person(name='Branden Kappes',
                              email='*****@*****.**',
                              tags='Colorado School of Mines')

        def lmco_contact():
            return pif.Person(name='Edward A. Pierson',
                              email='*****@*****.**',
                              tags='Lockheed Martin Corporation')

        # Every PIF record is a System object
        system = pif.System()
        # create a unique identifier. This must be URL friendly.
        system.uid = url_friendly(str(row['Sample Name']))
        # name the PIF
        system.names = str(row['Sample Name'])
        # record the parent sample name
        system.sub_systems = pif.System(uid=url_friendly(
            str(row['Parent Sample Name'])),
                                        names=str(row['Sample Name']))
        # set the contact information. By default, I set this as LMCO.
        system.contacts = {
            'Wolf': wolf_contact,
            'CMU': cmu_contact,
            'Mines': mines_contact,
            'LM': lmco_contact
        }.get(row['Contact'], lmco_contact)()

        # Certain fields we treat as special
        special = ['Sample Name', 'Parent Sample Name', 'Contact']
        filelist = None
        for column, value in row.items():
            # special columns have already been handled.
            if column in special:
                continue
            # no need to record empty record.
            if is_null(value):
                continue
            # handle FILEs.
            if column.startswith('FILE'):
                # add the FILE column to the list of special columns
                # so we don't add this as a property.
                special.append(column)
                # split on colon -- we don't need "FILE" in the name
                split = column.split(':')
                # Convert the filename (or the string-representation of
                # a list of filenames, e.g. [file1.png, file2.png]) to
                # a list of files
                value = str(value).strip("[]").split(",")
                # create a file reference for each file and store these as
                # a list of FileReference objects.
                for path in value:
                    file = pif.FileReference(relative_path=str(path),
                                             tags=':'.join(split[1:]).strip())
                    try:
                        filelist.append(file)
                    except AttributeError:
                        filelist = [file]
        # create a special property that holds all the files
        pty = pif.Property(name="Files", files=filelist)
        try:
            system.properties.append(pty)
        except AttributeError:
            # if this is the first property, append to a None value will
            # fail. Handle this edge case.
            system.properties = [pty]
        # everything else is a property
        for column, value in row.items():
            # special columns have already been handled.
            if column in special:
                continue
            # ignore this value if empty
            if is_null(value):
                continue
            # scalar can only contain lists, dict, string, or Number
            value = {
                pd.Timestamp: str,
                tuple: list
            }.get(type(value), type(value))(value)
            # otherwise, construct a property value.
            try:
                pty = pif.Property(name=column, scalars=value)
            except:
                pty = pif.Property(name=column, scalars=str(value))
                # print(f"{column}: {value}")
                # raise
            # units are stored, by convention in parentheses, e.g.
            # laser speed (mm/s). This regular expression extracts the the
            # last term surrounded by parentheses.
            try:
                pty.units = re.search('.*\(([^)]+)\)\s*$', column).group(1)
            except AttributeError:
                # no units were found...
                pass
            try:
                # add the property
                system.properties.append(pty)
            except AttributeError:
                # if this is the first property, append to a None value will
                # fail. Handle this edge case.
                system.properties = [pty]
        # done
        return system
Exemple #3
0
def to_pif(table,
           name=None,
           uid=None,
           subsystems={},
           properties={},
           preparation={},
           default=create_property):
    """
    Creates a Citrination PIF object from the Container object.

    :param table, Container: The DataFrame-like table. Each row becomes
        a new pif.System object.
    :param name: Callable that takes a pd.Series and generates a name
        for the PIF.
    :param uid: None or a callable that takes a pandas.Series and
        generates a name for the PIF. If None, then the UID is a
        URL-friendly version of the name.
    :param subsystems, dict: Dictionary/map between the name of the field
        and a callable that accepts a pd.Series and produces a pif.System
        stored as a subsystem of the pif.System.
    :param properties, dict: Dictionary/map between the name of the field
        and a callable that accepts a pd.Series and produces a list of
        pif.Property objects stored in the pif.Systems. This is the default
        location for all data not otherwise directed.
    :param preparation, dict: Dictionary/map between the name of the field
        and a callable that accepts a pd.Series and produces a
        pif.Preparation object stored in the pif.System.
    :param default, unary function: Default operation for keys not covered
        by any other parameter, e.g. subsystems, properties, or preparation.
    :return: List of pif.System objects.
    """
    container = table
    if name is None:
        container = set_index(table, 0)
        name = get_index
    if uid is None:
        uid = url_friendly(name)
    # set default location for data: properties
    defaultKeys = set(table.columns)
    # subsystems
    defaultKeys = defaultKeys - subsystems.keys()
    subsystems = match_regex(subsystems)
    # preparation
    defaultKeys = defaultKeys - preparation.keys()
    preparation = match_regex(preparation)
    # default location for data
    defaultKeys = defaultKeys - properties.keys()
    properties = match_regex(properties)
    # create the PIF and store the results
    results = []
    for index, series in container.iterrows():
        system = pif.System(name=name(series), uid=uid(series))
        system.sub_systems = [
            x for k, f in subsystems(series).items() for x in f(series[[k]])
        ]
        system.properties = [
            x for k, f in properties(series).items() for x in f(series[[k]])
        ]
        system.preparation = [
            x for k, f in preparation(series).items() for x in f(series[[k]])
        ]
        for k in defaultKeys:
            result = default(series[[k]])[0]
            if isinstance(result, pif.System):
                system.sub_systems.append(result)
            elif isinstance(result, pif.ProcessStep):
                system.preparation.append(result)
            elif isinstance(result, pif.Property):
                system.properties.append(result)
            else:
                raise ValueError(f"The default in 'to_pif' produced an "
                                 f"unrecognized object of type {result}.")
        results.append(system)
    return results
Exemple #4
0
def converter(files=[], **keywds):
    """
    Summary
    =======

    Converter to calculate strain data from Aramis CSV output.

    Input
    =====
    :files, str or list: One or list of CSV-formatted files.

    Options
    -------
    :timestep, float: Interval (seconds) with which strain data is collected.

    Output
    ======
    PIF object or list of PIF objects
    """
    # Handle required input parameters
    #+ ensure *files* is a list. If a single file is passed, convert it
    #+ into a list.
    if isinstance(files, str):
        files = [files]
    # Process filenames
    results = []
    for fname in files:
        with open(fname) as ifs:
            # defaultcode/encoding is currently discarded
            junk = ifs.readline()
            # "Statistics export" line is currently discarded
            junk = ifs.readline()
            # refactor column names from Aramis
            names = [
                entry.strip().lower() for entry in ifs.readline().split(',')
            ]
            #+ names[0] (strain stage): no change
            #
            #+ names[1] (strain)
            # `label` format: DESCRIPTION (REDUCTION): LABEL [UNITS]
            # desired format: LABEL (UNITS)
            label = names[1]
            fmark10tr = r'[^(]+\(([^)]+)\):\s*([^[]+)\[([^]]+)\]'
            try:
                reduction, label, units = re.search(fmark10tr, label).groups()
                names[1] = label
            except ValueError:
                msg = '"{}" in {} is not a valid label format.'.format(
                    label, fname)
                raise ValueError(msg)
            # restructure names and units
            names = [names[0], label.strip()]
            units = ['None', units]
            # read in the data
            converters = dict((i, ensure_float) for i in range(len(names)))
            data = pd.read_csv(ifs, names=names, converters=converters)
            data.dropna(inplace=True)
        # list of properties extracted from the file
        results = [
            pif.Property(name=name,
                         scalars=list(data[name]),
                         units=unit,
                         files=pif.FileReference(relative_path=fname),
                         methods=pif.Method(
                             name='digital image correlation (DIC)',
                             instruments=pif.Instrument(name='DIC',
                                                        producer='Aramis')),
                         data_type='EXPERIMENTAL',
                         tag=reduction) for name, unit in zip(names, units)
        ]
        # strain (results[1]) transforms
        strain = results[1]
        #+ standardize naming convention
        strain_type = strain.name
        strain.name = 'strain'
        try:
            strain.tag.append(strain_type)
        except AttributeError:
            strain.tag = [strain.tag, strain_type]
        #+ is a transform from % strain necessary?
        if strain.units == '%':
            strain.scalars = list(np.divide(strain.scalars, 100.))
            strain.units = 'mm/mm'
        # Determine the time at which each measurement was taken
        if 'timestep' in keywds:
            #+ ensure timestep is a float
            timestep = float(keywds['timestep'])
            time = list(data[names[0]] * timestep)
            replace_if_present_else_append(
                results,
                pif.Property(name='time',
                             scalars=time,
                             units='s',
                             files=pif.FileReference(relative_path=fname),
                             methods=pif.Method(
                                 name='digital image correlation (DIC)',
                                 instruments=pif.Instrument(
                                     name='DIC', producer='Aramis')),
                             data_type='EXPERIMENTAL',
                             tag=reduction),
                cmp=lambda A, B: A.name.lower() == B.name.lower())
    # Wrap in system object
    results = pif.System(names='Aramis', properties=results, tags=files)
    # job's done!
    return results