Exemple #1
0
def sample_aux_vars(betas, num_matches, time_range, covariates=None):
    pg = PyPolyaGamma()
    if covariates is None:
        covariates = identity_matrix(len(betas))

    if covariates.ndim == 2:
        num_players = len(covariates)
        aux_vars = [
            np.matrix([
                [
                    pg.pgdraw(num_matches[t][i, j],
                              (covariates[i] - covariates[j]).dot(betas[t]))
                    #entries
                    for j in range(num_players)  # columns
                ] for i in range(num_players)  # rows
            ]) for t in time_range  # index of matrix-list
        ]
    else:
        num_players = len(covariates[0])
        aux_vars = [
            np.matrix([
                [
                    pg.pgdraw(num_matches[t][i, j],
                              (covariates[t][i] - covariates[t][j]).dot(
                                  betas[t]))
                    #entries
                    for j in range(num_players)  # columns
                ] for i in range(num_players)  # rows
            ]) for t in time_range  # index of matrix-list
        ]

    return aux_vars
Exemple #2
0
class BinomialBayesianTensorFiltering(GaussianBayesianTensorFiltering):
    def __init__(self, nrows, ncols, ndepth, pg_seed=42, **kwargs):
        super().__init__(nrows, ncols, ndepth, **kwargs)

        # Initialize the Polya-Gamma sampler
        from pypolyagamma import PyPolyaGamma
        self.pg = PyPolyaGamma(seed=pg_seed)
        self.nu2 = np.zeros((nrows, ncols, ndepth))
        self.nu2_flat = np.zeros(np.prod(self.nu2.shape))
        self.sample_nu2 = True

    def _resample_W(self, data):
        Y, N = data
        kappa = (Y - N / 2) * self.nu2
        super()._resample_W(kappa)

    def _resample_V(self, data):
        Y, N = data
        kappa = (Y - N / 2) * self.nu2
        super()._resample_V(kappa)

    def _resample_nu2(self, data):
        '''Update the latent variables, which lead to variance terms in the
        gaussian sampler steps.'''
        Y, N = data
        Mu = np.einsum('nk,mtk->nmt', self.W, self.V)
        # missing = np.isnan(Y)
        # for s in np.ndindex(Y.shape):
        #     if missing[s]:
        #         continue
        #     self.nu2[s] = 1/self.pg.pgdraw(N[s], Mu[s])
        # print(N.flatten()[:5], Mu.flatten()[:5], self.nu2_flat[:5])
        with np.errstate(divide='ignore'):
            self.pg.pgdrawv(N.flatten(), Mu.flatten(), self.nu2.reshape(-1))
            self.nu2 = 1 / self.nu2
Exemple #3
0
    def __init__(self, rng, data, n_burn, n_iters, latent_dim, n_clusters,
                 n_rffs, dp_prior_obs, dp_df, disp_prior, bias_var):
        """Initialize base class for logistic RFLVMs.
        """
        # `_BaseRFLVM` will call `_init_specific_params`, and these need to be
        # set first.
        self.disp_prior = disp_prior
        self.bias_var = bias_var

        super().__init__(rng=rng,
                         data=data,
                         n_burn=n_burn,
                         n_iters=n_iters,
                         latent_dim=latent_dim,
                         n_clusters=n_clusters,
                         n_rffs=n_rffs,
                         dp_prior_obs=dp_prior_obs,
                         dp_df=dp_df)

        # Polya-gamma augmentation.
        self.pg = PyPolyaGamma()
        prior_Sigma = np.eye(self.M + 1)
        prior_Sigma[-1, -1] = np.sqrt(self.bias_var)
        self.inv_B = np.linalg.inv(prior_Sigma)
        mu_A_b = np.zeros(self.M + 1)
        self.inv_B_b = self.inv_B @ mu_A_b
        self.omega = np.empty(self.Y.shape)

        # Linear coefficients `beta`.
        b0 = np.zeros(self.M + 1)
        B0 = np.eye(self.M + 1)
        self.beta = self.rng.multivariate_normal(b0, B0, size=self._j_func())
Exemple #4
0
    def __init__(self, nrows, ncols, ndepth, pg_seed=42, **kwargs):
        super().__init__(nrows, ncols, ndepth, **kwargs)

        # Initialize the Polya-Gamma sampler
        from pypolyagamma import PyPolyaGamma
        self.pg = PyPolyaGamma(seed=pg_seed)
        self.nu2 = np.zeros((nrows, ncols, ndepth))
        self.nu2_flat = np.zeros(np.prod(self.nu2.shape))
        self.sample_nu2 = True
Exemple #5
0
def nb_fit_bayes(Z):
    from pypolyagamma import PyPolyaGamma
    from scipy.stats import norm
    results = []
    pgr = PyPolyaGamma(seed=0)
    model_logr = np.zeros(Z.shape[0])
    model_Psi = np.zeros(Z.shape)
    model_r = np.exp(model_logr)
    model_P = ilogit(model_Psi)
    prior_logr_sd = 100.
    Omegas = np.zeros_like(Z)
    for step in xrange(3000):
        # Random-walk MCMC for log(r)
        for mcmc_step in xrange(30):
            candidate_logr = model_logr + np.random.normal(
                0, 1, size=Z.shape[0])
            candidate_r = np.exp(candidate_logr)
            accept_prior = norm.logpdf(
                candidate_logr, loc=0, scale=prior_logr_sd) - norm.logpdf(
                    model_logr, loc=0, scale=prior_logr_sd)
            accept_likelihood = negBinomRatio(Z,
                                              candidate_r[:, np.newaxis],
                                              model_r[:, np.newaxis],
                                              model_P,
                                              model_P,
                                              log=True).sum(axis=1)
            accept_probs = np.exp(
                np.clip(accept_prior + accept_likelihood, -10, 1))
            accept_indices = np.random.random(size=Z.shape[0]) <= accept_probs
            model_logr[accept_indices] = candidate_logr[accept_indices]
            model_r = np.exp(model_logr)

        # Polya-Gamma sampler -- Marginal test version only
        N_ij = Z + model_r[:, np.newaxis]
        [
            pgr.pgdrawv(N_ij[i], np.repeat(model_Psi[i, 0], Z.shape[1]),
                        Omegas[i]) for i in xrange(Z.shape[0])
        ]

        # Sample the logits using only the expressed values -- Marginal test version only
        v = 1 / (Omegas.sum(axis=1) + 1 / 100.**2)
        m = v * (Z.sum(axis=1) - Z.shape[1] * model_r) / 2.
        model_Psi = np.random.normal(loc=m, scale=np.sqrt(v))[:, np.newaxis]
        model_P = ilogit(model_Psi)

        if step > 1000 and (step % 2) == 0:
            results.append([model_r, model_P[:, 0]])
            # print(model_r, model_P[:,0])
    return np.array(results)
def pg_tree_posterior(states, omega, R, path, depth, nthreads=None):
    '''
    Sample Polya-Gamma w_n,t|x_t,z_{t+1} where the subscript n denotes the hyperplane
    for which we are augmenting with the Polya-Gamma. Thus will augment all the logistic regressions
    that was taken while traversing down the tree
    :param states: This variable contains the continuous latent states. It is a list of numpy arrays
    :param omega: list for storing polya-gamma variables
    :param R: normal vectors of hyper-plane where the bias term is the last element in that array. The format is a list of arrays.
    :param path: path taken through the tree at time t. a list of numpy arrays
    :param depth: maximum depth of the tree
    :return: a list of pg rvs for each time series
    '''
    for idx in range(len(states)):
        T = states[idx][0, :].size
        b = np.ones(T * (depth - 1))
        if nthreads is None:
            nthreads = cpu_count()
        v = np.ones((depth - 1, T))
        out = np.empty(T * (depth - 1))
        #Compute parameters for conditional
        for d in range(depth - 1):
            for t in range(T):
                index = int(path[idx][d, t] - 1)  # Find which node you went through
                v[d, t] = np.matmul(R[d][:-1, index], np.array(states[idx][:, t])) + R[d][-1, index]
        seeds = np.random.randint(2 ** 16, size=nthreads)
        ppgs = [PyPolyaGamma(seed) for seed in seeds]
        #Sample in parallel
        pypolyagamma.pgdrawvpar(ppgs, b, v.flatten(order='F'), out)
        omega[idx] = out.reshape((depth - 1, T), order='F')

    return omega
def pg_spike_train(X, Y, C, Omega, D_out, nthreads=None, N=1, neg_bin=False):
    """
    Sample Polya-Gamma wy|Y,C,D,X where Y are spike trains and X are the continuous latent states
    :param X: List of continuous latent states
    :param Y: list of spike trains
    :param C: emission parameters. bias parameter is appended to last column.
    :param Omega: list used for storing polya-gamma variables
    :param D_out: Dimension of output i..e number of neurons
    :param nthreads: Number of threads for parallel sampling.
    :param N: Maximum number of spikes N for a binomial distribution, or number of failures in negative binomial
    :param neg_bin: Boolean flag dictating whether likelihood is negative binomial
    :return:
    """
    for idx in range(len(X)):
        T = X[idx][0, 1:].size
        b = N * np.ones(T * D_out)
        if neg_bin:
            b += Y[idx].flatten(order='F')
        if nthreads is None:
            nthreads = n_cpu
        out = np.empty(T * D_out)
        V = C[:, :-1] @ X[
            idx][:,
                 1:] + C[:,
                         -1][:,
                             na]  # Ignore the first point of the time series

        seeds = np.random.randint(2**16, size=nthreads)
        ppgs = [PyPolyaGamma(seed) for seed in seeds]

        pypolyagamma.pgdrawvpar(ppgs, b, V.flatten(order='F'), out)
        Omega[idx] = out.reshape((D_out, T), order='F')

    return Omega
    def __init__(self, V, K, X=None, b=None, sigmasq_b=1.0,
                 sigmasq_prior_prms=None, name=None):
        self.V, self.K = V, K

        # Initialize prior
        sigmasq_prior_prms = sigmasq_prior_prms if sigmasq_prior_prms is not None else {}
        self.sigmasq_x_prior = self._sigmasq_x_prior_class(K, **sigmasq_prior_prms)
        self.sigmasq_b = sigmasq_b

        # Initialize parameters
        self.X = np.sqrt(self.sigmasq_x) * npr.randn(V, K) if X is None else X * np.ones((V, K))

        self.b = np.zeros((V, V)) if b is None else b * np.ones((V, V))

        # Models encapsulate data
        # A:  observed adjacency matrix
        # m:  mask for network n specifying which features to use
        # mask: mask specifying which entries in A were observed/hidden
        self.As = []
        self.ms = []
        self.masks = []

        # Polya-gamma RNGs
        num_threads = get_omp_num_threads()
        seeds = npr.randint(2 ** 16, size=num_threads)
        self.ppgs = [PyPolyaGamma(seed) for seed in seeds]

        # Name the model
        self.name = name if name is not None else "lsm_K{}".format(K)
Exemple #9
0
    def _smpl_fn(cls, rng, b, c, size):
        pg = PyPolyaGamma(rng.randint(2 ** 16))

        if not size and b.shape == c.shape == ():
            return pg.pgdraw(b, c)
        else:
            b, c = np.broadcast_arrays(b, c)
            out_shape = b.shape + tuple(size or ())
            smpl_val = np.empty(out_shape, dtype="double")
            b = np.tile(b, tuple(size or ()) + (1,))
            c = np.tile(c, tuple(size or ()) + (1,))
            pg.pgdrawv(
                np.asarray(b.flat).astype("double", copy=True),
                np.asarray(c.flat).astype("double", copy=True),
                np.asarray(smpl_val.flat),
            )
            return smpl_val
Exemple #10
0
    def _sample_reference_posterior(
        self,
        num_samples: int,
        num_observation: Optional[int] = None,
    ) -> torch.Tensor:
        from pypolyagamma import PyPolyaGamma
        from tqdm import tqdm

        self.dim_data = 10
        # stimulus_I = torch.load(self.path / "files" / "stimulus_I.pt")
        design_matrix = torch.load(self.path / "files" / "design_matrix.pt")
        true_parameters = self.get_true_parameters(num_observation)
        self.raw = True
        observation_raw = self.get_observation(num_observation)
        self.raw = False

        mcmc_num_samples_warmup = 25000
        mcmc_thinning = 25
        mcmc_num_samples = mcmc_num_samples_warmup + mcmc_thinning * num_samples

        pg = PyPolyaGamma()
        X = design_matrix.numpy()
        obs = observation_raw.numpy()
        Binv = self.prior_params["precision_matrix"].numpy()

        sample = true_parameters.numpy().reshape(-1)  # Init at true parameters
        samples = []
        for j in tqdm(range(mcmc_num_samples)):
            psi = np.dot(X, sample)
            w = np.array([pg.pgdraw(1, b) for b in psi])
            O = np.diag(w)  # noqa: E741
            V = np.linalg.inv(np.dot(np.dot(X.T, O), X) + Binv)
            m = np.dot(V, np.dot(X.T, obs.reshape(-1) - 1 * 0.5))
            sample = np.random.multivariate_normal(np.ravel(m), V)
            samples.append(sample)
        samples = np.asarray(samples).astype(np.float32)
        samples_subset = samples[mcmc_num_samples_warmup::mcmc_thinning, :]

        reference_posterior_samples = torch.from_numpy(samples_subset)

        return reference_posterior_samples
Exemple #11
0
    def rng_fn(cls, rng, b, c, size):
        pg = PyPolyaGamma(rng.randint(2**16))

        if not size and b.shape == c.shape == ():
            return pg.pgdraw(b, c)
        else:
            b, c = np.broadcast_arrays(b, c)
            size = tuple(size or ())

            if len(size) > 0:
                b = np.broadcast_to(b, size)
                c = np.broadcast_to(c, size)

            smpl_val = np.empty(b.shape, dtype="double")

            pg.pgdrawv(
                np.asarray(b.flat).astype("double", copy=True),
                np.asarray(c.flat).astype("double", copy=True),
                np.asarray(smpl_val.flat),
            )
            return smpl_val
Exemple #12
0
class BasicRandom():
    """
    Generators of random variables from the basic distributions used in
    Bayesian sparse regression.
    """
    def __init__(self, seed=None):
        self.np_random = np.random
        self.pg = None
        self.ts = None
        self.set_seed(seed)

    def set_seed(self, seed):
        self.np_random.seed(seed)
        pg_seed = np.random.randint(1, 1 + np.iinfo(np.uint32).max)
        ts_seed = np.random.randint(1, 1 + np.iinfo(np.uint32).max)
        self.pg = PyPolyaGamma(seed=pg_seed)
        self.ts = ExpTiltedStableDist(seed=ts_seed)

    def get_state(self):
        rand_gen_state = {
            'numpy': self.np_random.get_state(),
            'tilted_stable': self.ts.get_state(),
            'pypolyagamma': self.pg
            # Don't know how to access the internal state, so just save
            # the object itself.
        }
        return rand_gen_state

    def set_state(self, rand_gen_state):
        self.np_random.set_state(rand_gen_state['numpy'])
        self.ts.set_state(rand_gen_state['tilted_stable'])
        self.pg = rand_gen_state['pypolyagamma']

    def polya_gamma(self, shape, tilt, size):
        omega = np.zeros(size)
        self.pg.pgdrawv(shape, tilt, omega)
        return omega

    def tilted_stable(self, char_exponent, tilt):
        return self.ts.rv(char_exponent, tilt)
Exemple #13
0
 def logisticAndReject(self, X, Y):
     pg = PyPolyaGamma()  # use N(0, I) prior
     n = X.shape[0]
     # Output layer
     #out_fit = LinearRegression(fit_intercept = False).fit(self.layers[self.nlayer-1].h, Y)
     #self.layers[self.nlayer].W = out_fit.coef_
     prior = np.random.normal(0, 1, size=self.hid_dim)
     w = np.zeros(n)
     for k in range(n):
         w[k] = pg.pgdraw(
             1, np.dot(self.layers[self.nlayer - 1].h[k, :], prior))
     kappa = self.layers[self.nlayer].h[:, 0] - 0.5
     omega = np.diag(w)
     Vw = np.linalg.inv(
         np.dot(np.dot(np.transpose(self.layers[self.nlayer].h), omega),
                self.layers[self.nlayer].h) + 1)[0]
     mw = Vw * np.dot(np.transpose(self.layers[self.nlayer].h), kappa)[0]
     self.layers[self.nlayer].W[:, 0] = np.random.normal(mw, Vw)
     # Hidden layers
     for l in range(self.nlayer - 1, 0, -1):
         for j in range(self.hid_dim):
             # Draw prior beta
             curr = np.random.normal(0, 1, size=self.hid_dim)
             for t in range(self.mc_iter):
                 # Draw latent w
                 w = np.zeros(n)
                 for k in range(n):
                     w[k] = pg.pgdraw(
                         1, np.dot(self.layers[l - 1].h[k, :], curr))
                 # Draw posterior beta
                 kappa = self.layers[l].h[:, j] - 0.5
                 omega = np.diag(w)
                 Vw = np.linalg.inv(
                     np.dot(np.dot(np.transpose(self.layers[l].h), omega),
                            self.layers[l].h) + np.eye(self.hid_dim))
                 mw = np.dot(Vw,
                             np.dot(np.transpose(self.layers[l].h), kappa))
                 curr = np.random.multivariate_normal(mw, Vw)
             self.layers[l].W[:, j] = curr
Exemple #14
0
    def _init_embedding_aux_params(self):
        self.pg = PyPolyaGamma()
        self.gamma = np.empty((self.n_topics, self.n_words))
        self.gamma_sum_ax1 = np.zeros(self.n_topics)
        self.SIGMA_inv = np.empty(
            (self.n_topics, self.embedding_size, self.embedding_size))
        self.b_cgam = np.empty((self.n_topics, self.n_words))
        self.b_cgam_sum_ax1 = np.zeros(self.n_topics)
        self.MU = np.empty((self.n_topics, self.embedding_size))
        for k in range(self.n_topics):
            for word_index in range(self.n_words):
                self.gamma[k, word_index] = self.pg.pgdraw(
                    1, self.pi[k, word_index])
                self.gamma_sum_ax1[k] += self.gamma[k, word_index]

            self.SIGMA_inv[k] = np.matmul(self.f_outer.T,
                                          self.gamma[k]) + self.sig_I_lamb_inv
            self.b_cgam[k] = self.b[k] - .5 - self.c[k] * self.gamma[k]
            self.b_cgam_sum_ax1[k] = np.sum(self.b_cgam[k])

        self.b_cgam_f = np.matmul(self.b_cgam, self.f)
        for k in range(self.n_topics):
            SIGMA_k = np.linalg.inv(self.SIGMA_inv[k])
            self.MU[k] = np.matmul(SIGMA_k, self.b_cgam_f[k])
Exemple #15
0
    def logisticAndReject(self, X, Y):
        pg = PyPolyaGamma()  # use N(0, I) prior
        n = X.shape[0]
        # Output layer
        out_fit = LinearRegression(fit_intercept=False).fit(
            self.layers[self.nlayer - 1].h, Y)
        self.layers[self.nlayer].W = out_fit.coef_
        # Hidden layers
        for l in range(self.nlayer - 1, 0, -1):
            #    for j in range(self.hid_dim):
            # Draw prior beta
            #prior = np.random.normal(0, 1, size = self.hid_dim)
            # Draw latent w
            #w = np.zeros(n)
            #for k in range(n):
            #    w[k] = pg.pgdraw(1, np.dot(self.layers[l-1].h[k,:], prior))
            # Draw posterior beta
            #kappa = self.layers[l].h[:,j] - 0.5
            #omega = np.diag(w)
            #Vw = np.linalg.inv(np.dot(np.dot(np.transpose(self.layers[l].h), omega), self.layers[l].h) + np.eye(self.hid_dim))
            #mw = np.dot(Vw, np.dot(np.transpose(self.layers[l].h), kappa))
            #self.layers[l].W[:,j] = np.random.multivariate_normal(mw, Vw)

            # Propose
            propW = np.zeros(self.layers[l].W.shape)
            logalpha = 0
            for j in range(self.hid_dim):
                hid_fit = LogisticRegression(fit_intercept=False).fit(
                    self.layers[l - 1].h, self.layers[l].h[:, j])
                propW[:,
                      j] = hid_fit.coef_ + np.random.normal(size=len(propW[:,
                                                                           j]))
                prop_hW = expit(np.dot(self.layers[l - 1].h, propW[:, j]))
                curr_hW = expit(
                    np.dot(self.layers[l - 1].h, self.layers[l].W[:, j]))
                # Accept-Reject
                logalpha = sum(
                    self.layers[l].h[:, j] * np.log(prop_hW / curr_hW) +
                    (1 - self.layers[l].h[:, j]) * np.log((1 - prop_hW) /
                                                          (1 - curr_hW)))
                if np.log(np.random.uniform()) < logalpha:
                    self.layers[l].W[:, j] = propW[:, j]
def pg_spike_train(X, C, Omega, D_out, nthreads=None):
    '''
    Sample Polya-Gamma wy|Y,C,D,X where Y are spike trains and X are the continuous latent states
    :param X: continuous latent states
    :param C: emission parameters. bias parameter is appended to last column.
    :param Omega: list used for storing polya-gamma variables
    :param D_out: Dimension of output i..e number of neurons
    :return: polya gamma samples from conditional posterior in a list of numpy arrays
    '''
    for idx in range(len(X)):
        T = X[idx][0, 1:].size
        b = np.ones(T * D_out)
        if nthreads is None:
            nthreads = cpu_count()
        out = np.empty(T * D_out)
        V = C[:, :-1] @ X[idx][:, 1:] + C[:, -1][:, na]  # Ignore the initial point of the time series

        seeds = np.random.randint(2 ** 16, size=nthreads)
        ppgs = [PyPolyaGamma(seed) for seed in seeds]

        pypolyagamma.pgdrawvpar(ppgs, b, V.flatten(order='F'), out)
        Omega[idx] = out.reshape((D_out, T), order='F')

    return Omega
Exemple #17
0
import argparse

import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

from polyagamma import polyagamma
from pypolyagamma import PyPolyaGamma

sns.set_style("darkgrid")

rng = np.random.default_rng(0)
pg = PyPolyaGamma(0)

data = {
    "devroye": None,
    "alternate": None,
    "gamma": None,
    "saddle": None,
    "$pypolyagamma$": None
}


def plot_densities(h=1, z=0, size=1000):
    for method in data:
        if method == "$pypolyagamma$":
            data[method] = [pg.pgdraw(h, z) for _ in range(size)]
        else:
            data[method] = polyagamma(h=h,
                                      z=z,
                                      method=method,
Exemple #18
0
    def __init__(self,
                 X,
                 cov_params,
                 base_measure,
                 lmbda=None,
                 burnin=1000,
                 num_integration_points=1000,
                 max_iterations=2000,
                 update_hyperparams=True,
                 update_basemeasure=True,
                 nthreads=1,
                 gp_mu=0,
                 sample_hyperparams_iter=10):
        """ Initialises class of Gibbs sampler. Sampled data is saved in
        dictionary 'self.data'.

        The dictionary self.data contains all the sampled data. 'X' are the
        locations (observations and latent), 'g' the GP at these locations,
        'lmbda' the max rate of latent Poisson process, 'cov_params' the kernel
        parameters, 'M' the number of latent events, 'time' the time for
        samples, 'bm_params' the base measure parameters, 'gp_mu' the mean of
        the GP prior.

        :param X: Data.
        :type X: numpy.ndarray [instances x features]
        :param cov_params: Kernel hyperparameters. List with first entry the
        prefactor and second a D-dimensional array with length scales.
        :type cov_params: list
        :param base_measure:
        :type base_measure: BaseMeasure
        :param lmbda: Initial value for max. Poisson rate. If None
        it will be equal to number of data points. Default is None.
        :type lmbda: float
        :param burnin: Number of iteration before the posterior will be
        sampled. Default=1000.
        :type burnin: int
        :param num_integration_points: Number of integration points. Only
        used for predictive likelihood. Default=1000.
        :type num_integration_points: int
        :param max_iterations: Number of iterations the posterior is sampled.
        Default=2000.
        :type max_iterations: int
        :param update_hyperparams: Whether GP hyperparameters should be
        sampled. Default=True.
        :type update_hyperparams: bool
        :param update_basemeasure: Whether base measure parameters should be
        sampled. Can only be done for certain base measure ('normal',
        'laplace', 'standard_t'). Default=True.
        :type update_basemeasure: bool
        :param nthreads: Number of threads used for PG sampling. Default=1.
        :type nthreads: int
        :param gp_mu: Mean of GP prior.
        :type gp_mu: float
        :param sample_hyperparams_iter: Every x^th step hyperparameters are
        sampler. Default=0.
        :type sample_hyperparams_iter: float
        """
        self.max_iterations = int(max_iterations)
        self.D = X.shape[1]
        self.cov_params = cov_params
        self.X = X
        self.N = self.X.shape[0]
        self.base_measure = base_measure
        self.noise = 1e-4

        if lmbda is None:
            self.lmbda = self.N / 1.
        else:
            self.lmbda = lmbda
        seeds = numpy.random.randint(2**16, size=nthreads)
        self.pg = [PyPolyaGamma(seed) for seed in seeds]
        self.M = int(self.lmbda)
        self.M_save = numpy.empty(self.max_iterations)
        # Position of all events (first N are the actual observed ones)
        self.X_all = numpy.empty([self.N + self.M, self.D])
        self.X_all[:self.N] = self.X
        self.X_all[self.N:] = base_measure.sample_density(self.M)
        self.marks = numpy.empty(self.N + self.M)
        self.K = self.cov_func(self.X_all, self.X_all)
        self.K += self.noise * numpy.eye(self.K.shape[0])
        self.L = numpy.linalg.cholesky(self.K)
        self.L_inv = solve_triangular(self.L,
                                      numpy.eye(self.L.shape[0]),
                                      lower=True,
                                      check_finite=False)
        self.K_inv = self.L_inv.T.dot(self.L_inv)
        self.gp_mu = gp_mu
        self.pred_log_likelihood = []
        self.g = numpy.zeros([self.N + self.M])
        # Probability of insertion or deletion proposal
        self.num_iterations = 0
        self.burnin = int(burnin)
        self.num_integration_points = num_integration_points
        self.place_integration_points()
        self.update_hyperparams = update_hyperparams
        self.update_basemeasure = update_basemeasure
        self.update_hyperparams_iter = sample_hyperparams_iter

        self.data = {
            'X': [],
            'g': [],
            'lmbda': [],
            'cov_params': [],
            'M': [],
            'time': [],
            'bm_params': [],
            'gp_mu': []
        }
def pg_mcmc(true_params, obs, duration=100, dt=1, seed=None,
    prior_dist=None):
    """Polya-Gamma sampler for GLM

    Returns
    -------
    array : samples from posterior
    """

    if prior_dist is None:
        prior_dist = smoothing_prior(n_params=true_params.size, seed=seed)

    # seeding
    np.random.seed(seed)
    pg = PyPolyaGamma()  # seed=seed

    # observation
    I = obs['I'].reshape(1,-1)
    S_obs = obs['data'].reshape(-1)

    # simulation protocol
    num_param_inf = len(true_params)
    dt = 1
    t = np.arange(0, duration, dt)

    N = 1   # Number of trials
    M = num_param_inf-1   # Length of the filter

    # build covariate matrix X, such that X * h returns convolution of x with filter h
    X = np.zeros(shape=(len(t), M))
    for j in range(M):
        X[j:,j] = I[0,0:len(t)-j]

    # prior
    # smoothing prior on h; N(0, 1) on b0. Smoothness encouraged by penalyzing
    # 2nd order differences of elements of filter
    #prior_dist = prior(n_params=true_params.size, seed=seed)
    Binv = prior_dist.P

    # The sampler consists of two iterative Gibbs updates
    # 1) sample auxiliary variables: w ~ PG(N, psi)
    # 2) sample parameters: beta ~ N(m, V); V = inv(X'O X + Binv), m = V*(X'k), k = y - N/2
    nsamp = 500000   # samples to evaluate the posterior

    # add a column of 1s to the covariate matrix X, in order to model the offset too
    X = np.concatenate((np.ones(shape=(len(t), 1)), X), axis=1)

    beta = true_params*1.
    BETA = np.zeros((M+1,nsamp))

    for j in tqdm(range(1, nsamp)):
        psi = np.dot(X, beta)
        w = np.array([pg.pgdraw(N, b) for b in psi])
        O = np.diag(w)

        V = np.linalg.inv(np.dot(np.dot(X.T, O), X) + Binv)
        m = np.dot(V, np.dot(X.T, S_obs - N * 0.5))

        beta = np.random.multivariate_normal(np.ravel(m), V)

        BETA[:,j] = beta

    # burn-in
    burn_in = 100000
    BETA_sub_samp = BETA[:, burn_in:nsamp:30]

    # return sampling results
    return BETA_sub_samp
Exemple #20
0
# Consider a simple binomial model with unknown probability
# Model the probability as the logistic of a scalar Gaussian.
N = 10
mu = 0.0
sigmasq = 1.0
x_true = npr.normal(mu, np.sqrt(sigmasq))
p_true = logistic(x_true)
y = npr.binomial(N, p_true)

# Gibbs sample the posterior distribution p(x | y)
# Introduce PG(N,0) auxiliary variables to render
# the model conjugate.  First, initialize the PG
# sampler and the model parameters.
N_samples = 10000
pg = PyPolyaGamma(seed=0)
xs = np.zeros(N_samples)
omegas = np.ones(N_samples)

# Now run the Gibbs sampler
for i in range(1, N_samples):
    # Sample omega given x, y from its PG conditional
    omegas[i] = pg.pgdraw(N, xs[i-1])

    # Sample x given omega, y from its Gaussian conditional
    sigmasq_hat = 1./(1. / sigmasq + omegas[i])
    mu_hat = sigmasq_hat * (mu / sigmasq + (y - N / 2.))
    xs[i] = npr.normal(mu_hat, np.sqrt(sigmasq_hat))

# Compute the true posterior density
xx = np.linspace(x_true-3., x_true+3, 1000)
Exemple #21
0
class GibbSampler(SGCP_Sampler):

    def __init__(self, *args, **kwargs):
        super(GibbSampler, self).__init__(*args, **kwargs)

        self.pg = PyPolyaGamma(seed=np.random.randint(2 ** 16, size=None))

    def run(self):

        print('Starting Gibbs')

        latent_events = np.random.rand(self.M, self.dim) * self.diff
        latent_marks = np.random.rand(self.M, 1) * 2 ** 10  # distribute on space
        marks = np.random.rand(self.N, 1) * 2 ** 10  # distribute on space

        start = time.time()

        for k in range(self.maxiter):

            if k == 1:
                loop_start = time.time()
            if k == 2:
                print('Approximately %.2f min to go' % (loop * self.maxiter / 60))

            if self.inducing_points is not None:

                if k == 0:
                    self.events_base = self.inducing_points
                    self.K = self.cov_function(self.events_base, self.events_base, self.kernelparameter)
                    self.K += np.eye(len(self.K)) * self.noise
                    self.L = np.linalg.cholesky(self.K)
                    self.L_inv = np.linalg.solve(self.L, np.eye(self.L.shape[0]))
                    self.K_inv = self.L_inv.T @ self.L_inv

                self.sample_upper_bound(latent_marks.shape[0])
                self.sample_gaussian_induced(latent_events, marks, latent_marks)

                if self.sample_kernel_parameter:
                    if (k % 10) == 0:
                        self.sample_kernelparameter()

                intensity = self.sample_results()

                latent_events, g_M, g_N = self.sample_latent_events_induced()
                latent_marks = self.sample_latent_marks(g_M)
                marks = self.sample_marks(g_N)

            else:

                self.events_base = np.concatenate((self.observed_events, latent_events), axis=0)
                self.K = self.cov_function(self.events_base, self.events_base, self.kernelparameter)
                self.K += np.eye(len(self.K)) * self.noise
                self.L = np.linalg.cholesky(self.K)
                self.L_inv = np.linalg.solve(self.L, np.eye(self.L.shape[0]))
                self.K_inv = self.L_inv.T @ self.L_inv

                self.sample_upper_bound(latent_marks.shape[0])
                self.sample_gaussian(marks, latent_marks)

                if self.sample_kernel_parameter:
                    if (k % 10) == 0:
                        self.sample_kernelparameter()  # updates the kernels

                intensity = self.sample_results()

                latent_events, g_M = self.sample_latent_events()
                latent_marks = self.sample_latent_marks(g_M)
                marks = self.sample_marks(np.array(self.g[:self.N, :]))

            if ((k > 0) or (k == self.maxiter - 1)) and (k % 50 == 0):
                if self.inducing_points is not None:
                    print('%d   with inducing points' % k)
                else:
                    print(k)

            self.llambdas[k] = self.upper_bound
            self.latent_M[k] = latent_marks.shape[0]
            self.intensities[k, :] = intensity
            # self.log_likelihoods[k, :] = log_likelihood

            if k == 1:
                loop = time.time() - loop_start

        self.time = (time.time() - start) / 60
        print('Done in %.2f min' % self.time)
        self.mean_intensities = np.mean(self.intensities[self.burnin:], axis=0)

    ######################################################################

    def sample_gaussian_induced(self, latent_events, marks, latent_marks):
        L_ind = len(self.inducing_points)
        kN = self.cov_function(self.inducing_points, self.observed_events, self.kernelparameter)
        kM = self.cov_function(self.inducing_points, latent_events, self.kernelparameter)
        BN = kN[np.newaxis, ::] * kN[::, np.newaxis]  # (L,L,N)
        BM = kM[np.newaxis, ::] * kM[::, np.newaxis]  # (L,L,M)
        wN = np.repeat(marks, L_ind, axis=1)
        wN = np.repeat(wN[:, :, np.newaxis], L_ind, axis=2).T
        wM = np.repeat(latent_marks, L_ind, axis=1)
        wM = np.repeat(wM[:, :, np.newaxis], L_ind, axis=2).T

        B = np.sum(BN * wN, axis=2) + np.sum(BM * wM, axis=2)
        BLinv = np.linalg.solve(B + self.K, np.eye(L_ind))
        sigmaL = self.K @ BLinv @ self.K
        muL = 0.5 * self.K @ BLinv @ (np.sum(kN, axis=1, keepdims=True) - np.sum(kM, axis=1, keepdims=True))
        self.g = Utils.sample_gaussian(muL, sigmaL)  # + np.eye(L_ind) * self.noise)

    def sample_latent_events_induced(self):
        xx = 0
        while (xx == 0):
            latent_events, g_J, g_N = self.sample_latent_process_induced()
            xx = len(latent_events)
        return latent_events, g_J, g_N

    def sample_latent_process_induced(self):
        J = np.random.poisson(lam=self.vol * self.upper_bound, size=None)  # nb_events
        events = np.random.rand(J, self.dim) * self.diff
        g = self.sample_cond(np.concatenate((events, self.observed_events), axis=0))
        g_J = np.array(g[:len(events)])
        g_N = np.array(g[len(events):])
        R = np.random.rand(J) * self.upper_bound
        idx = R < self.upper_bound * SGCP_Sampler.sigmoid(-g_J.flatten())
        acc_events = events[idx, :]
        return acc_events, g_J[idx, :], g_N

    ######################################################################

    def sample_gaussian(self, marks, latent_marks):
        M = latent_marks.shape[0]
        marks_concat = np.concatenate((marks, latent_marks), axis=0)
        sigma = np.diag(1. / marks_concat.flatten())
        sigma_NM = sigma - sigma @ np.linalg.solve(sigma + self.K, np.eye(self.N + M)) @ sigma
        u = np.concatenate((np.full((self.N, 1), 1. / 2, ), np.full((M, 1), -1. / 2)), axis=0)
        mean_NM = sigma_NM @ u
        self.g = Utils.sample_gaussian(mean_NM, sigma_NM)  # + np.eye(sigma_NM.shape[0]) * self.noise)

    def sample_latent_process(self):
        J = np.random.poisson(lam=self.vol * self.upper_bound, size=None)  # nb_events
        events = np.random.rand(J, self.dim) * self.diff
        g_J = self.sample_cond(events)
        R = np.random.rand(J) * self.upper_bound
        idx = R < self.upper_bound * SGCP_Sampler.sigmoid(-g_J.flatten())
        acc_events = events[idx, :]
        return acc_events, g_J[idx, :]

    def sample_latent_events(self):
        xx = 0
        while (xx == 0):
            latent_events, g_J = self.sample_latent_process()
            xx = len(latent_events)
        return latent_events, g_J

    ######################################################################

    def sample_upper_bound(self, M):
        self.upper_bound = np.random.gamma(shape=self.alpha + M + self.N, scale=1. / (self.beta + self.vol))

    def sample_latent_marks(self, g_M):
        M = g_M.shape[0]
        latent_marks = np.zeros([M, 1])
        for i in range(M):
            latent_marks[i, :] = self.pg.pgdraw(1, g_M[i, :])
        return latent_marks

    def sample_kernelparameter(self):
        prop = np.random.randn(self.dim + 1)
        alpha = np.exp(np.log(self.kernelparameter[0]) + prop[0] * 0.05)
        beta = np.exp(np.log(self.kernelparameter[1]) + prop[1:] * 0.05)
        proposal = [alpha, beta]
        K = self.cov_function(self.events_base, self.events_base, proposal)
        K += np.eye(K.shape[0]) * self.noise
        L = np.linalg.cholesky(K)
        L_inv = np.linalg.solve(L, np.eye(L.shape[0]))
        K_inv = L_inv.T @ L_inv
        prop = - np.sum(np.log(L.diagonal())) - 0.5 * self.g.T @ K_inv @ self.g
        old = - np.sum(np.log(self.L.diagonal())) - 0.5 * self.g.T @ self.K_inv @ self.g
        A = min(0, np.asscalar(prop - old))
        u = np.log(np.random.rand())
        if u < A:
            self.K = K
            self.L = L
            self.L_inv = L_inv
            self.K_inv = K_inv
            self.kernelparameter = proposal
            print(self.kernelparameter)

    def predict(self, Xtest):  # predict unknown function values of Xtest
        C = self.cov_function(self.events_base, Xtest, self.kernelparameter)
        K_test = self.cov_function(Xtest, Xtest, self.kernelparameter)
        mean_predict = C.T @ self.K_inv @ self.g
        cov_predict = K_test - C.T @ self.K_inv @ C
        return mean_predict, cov_predict  # posterior mean and covariance

    def sample_cond(self, Xtest):
        mean, cov = self.predict(Xtest)
        tmp = Utils.sample_gaussian(mean, cov + np.eye(cov.shape[0]) * self.noise)
        return tmp

    def sample_marks(self, g_N):
        marks = np.zeros([self.N, 1])
        for i in range(self.N):
            marks[i, :] = self.pg.pgdraw(1, g_N[i, :])
        return marks

    def sample_results(self):
        self.events.append(self.events_base)
        self.gaussians.append(self.g)
        g = self.sample_cond(self.grid_events)
        return self.upper_bound * SGCP_Sampler.sigmoid(g.flatten())
Exemple #22
0
    def __init__(self, *args, **kwargs):
        super(GibbSampler, self).__init__(*args, **kwargs)

        self.pg = PyPolyaGamma(seed=np.random.randint(2 ** 16, size=None))
Exemple #23
0
class WEIFTM():

    NO_TOPIC = -1

    def __init__(self,
                 n_topics,
                 alpha_0=.1,
                 beta_0=.01,
                 sig_0=1,
                 topic_sparsity=.3,
                 delta_0=1):
        self.n_topics = n_topics
        self.alpha_0 = alpha_0
        self.beta_0 = beta_0
        self.sig_0 = sig_0
        self.topic_sparsity = topic_sparsity
        self.delta_0 = delta_0
        self.log_likelihoods = []
        self.accuracies = []

    def get_documents_from_directory(self, directory_path):
        self.labels = {}
        count = 0
        class_count = -1
        classes = set()
        documents = []
        for (path, dirs, files) in os.walk(directory_path):
            files.sort()
            cl = path.strip(os.path.sep).split(os.path.sep)[-1]
            for file_path in files:
                if file_path.endswith('.txt'):
                    document_path = os.path.join(path, file_path)
                    try:
                        file = open(document_path, 'r')
                        document = file.read()
                        file.close()
                        documents.append(document)
                        if cl not in classes:
                            classes.add(cl)
                            class_count += 1
                        self.labels[count] = class_count
                        count += 1
                    except Exception as e:
                        print(e)
        return documents

    def get_documents_from_csv(self,
                               csv_path,
                               text_name="text",
                               class_name="class"):
        with open(csv_path, 'r', encoding='utf8', errors='ignore') as csv_file:
            dataframe = pd.read_csv(StringIO(csv_file.read()))
            # dataframe = dataframe.iloc[np.random.permutation(dataframe.shape[0])[:10]]
            # dataframe = dataframe.reset_index()
            dataframe = dataframe.fillna(value={class_name: ''})
            dataframe[class_name] = LabelEncoder().fit_transform(
                dataframe[class_name])
            self.labels = dict(dataframe[class_name])
            return list(dataframe[text_name])

    def get_embedding_vocabulary(self, embedding_path):
        vocabulary = set()
        with open(embedding_path) as emb_file:
            for line in emb_file:
                if line != "":
                    word = line.strip().split(" ", 1)[0]
                    vocabulary.add(word)
        return vocabulary

    def load_corpus(self, documents, vocabulary, custom_stop_words=[]):
        preprocessed_documents = preprocess_tweets(documents, vocabulary,
                                                   custom_stop_words)
        self.dictionary = corpora.Dictionary(preprocessed_documents)
        self.n_words = len(self.dictionary)
        self.corpus = [
            self.dictionary.doc2bow(document)
            for document in preprocessed_documents
        ]
        self.n_documents = len(self.corpus)

    def load_embeddings(self,
                        embedding_size,
                        embedding_path,
                        corpus_dir,
                        use_pca=False,
                        pca_var=.97):
        self.embedding_size = embedding_size
        cache_dir = "./cache/{}/".format(
            corpus_dir.strip(os.path.sep).strip('.csv').split(os.path.sep)[-1])
        embedding_cache_path = cache_dir + "embedding{}.npy".format(
            embedding_size)
        if os.path.isfile(embedding_cache_path):
            self.f = np.load(embedding_cache_path)
        else:
            vocabulary = set(self.dictionary.values())
            self.f = np.empty((self.n_words, self.embedding_size))
            with open(embedding_path) as emb_file:
                for line in emb_file:
                    if line != "":
                        word, str_embedding = line.strip().split(" ", 1)
                        if word in vocabulary:
                            word_index = self.dictionary.token2id[word]
                            self.f[word_index] = np.array(
                                str_embedding.split(" "), dtype=float)
            if not os.path.isdir(cache_dir):
                os.makedirs(cache_dir)
            np.save(embedding_cache_path, self.f)

        if use_pca == True:
            self._embedding_PCA(pca_var)

        self.f_outer = np.array([np.outer(f_v, f_v) for f_v in self.f])

    def _embedding_PCA(self, var_percent):
        self.pca = PCA(self.embedding_size)
        self.f_raw = self.f
        self.pca.fit(self.f_raw)
        n_components = np.argmax(
            np.cumsum(self.pca.explained_variance_ratio_) > var_percent)
        self.f = self.pca.transform(self.f_raw)[:, :n_components]
        self.embedding_size_raw = self.embedding_size
        self.embedding_size = n_components

    def initialize_parameters(self):
        self._init_b()
        self._init_n_m_Z()
        self._init_lamb()
        self._init_c()
        self._init_pi()
        self._init_embedding_aux_params()

    def _init_b(self):
        self.b = np.random.binomial(1, self.topic_sparsity,
                                    (self.n_topics, self.n_words))
        self.b_sum_ax1 = np.sum(self.b, axis=1)

    def _init_n_m_Z(self):
        self.n = np.zeros((self.n_topics, self.n_words))
        self.m = np.zeros((self.n_documents, self.n_topics))
        self.Z = []
        for document_index, document in enumerate(self.corpus):
            Z_document = []
            for word_occurrence_tuple in document:
                word_index = word_occurrence_tuple[0]
                count = word_occurrence_tuple[1]
                for _ in range(count):
                    nonzero_b = self.b[:, word_index].nonzero()[0]
                    if len(nonzero_b) == 0:
                        topic_assignment = WEIFTM.NO_TOPIC
                    else:
                        topic_assignment = np.random.choice(nonzero_b)
                        self.n[topic_assignment, word_index] += 1
                        self.m[document_index, topic_assignment] += 1
                    Z_document.append([word_index, topic_assignment])
            self.Z.append(Z_document)

    def _init_lamb(self):
        sig_I_lamb = self.sig_0**2 * np.eye(self.embedding_size)
        self.lamb = np.random.multivariate_normal(np.zeros(
            self.embedding_size),
                                                  sig_I_lamb,
                                                  size=self.n_topics)
        self.sig_I_lamb_inv = self.sig_0**-2 * np.eye(self.embedding_size)

    def _init_c(self):
        sig_I_c = self.sig_0**2 * np.eye(self.n_topics)
        self.c = np.random.multivariate_normal(np.zeros(self.n_topics),
                                               sig_I_c).reshape((-1, 1))

    def _init_pi(self):
        self.pi = np.matmul(self.lamb, self.f.T) + self.c

    def _init_embedding_aux_params(self):
        self.pg = PyPolyaGamma()
        self.gamma = np.empty((self.n_topics, self.n_words))
        self.gamma_sum_ax1 = np.zeros(self.n_topics)
        self.SIGMA_inv = np.empty(
            (self.n_topics, self.embedding_size, self.embedding_size))
        self.b_cgam = np.empty((self.n_topics, self.n_words))
        self.b_cgam_sum_ax1 = np.zeros(self.n_topics)
        self.MU = np.empty((self.n_topics, self.embedding_size))
        for k in range(self.n_topics):
            for word_index in range(self.n_words):
                self.gamma[k, word_index] = self.pg.pgdraw(
                    1, self.pi[k, word_index])
                self.gamma_sum_ax1[k] += self.gamma[k, word_index]

            self.SIGMA_inv[k] = np.matmul(self.f_outer.T,
                                          self.gamma[k]) + self.sig_I_lamb_inv
            self.b_cgam[k] = self.b[k] - .5 - self.c[k] * self.gamma[k]
            self.b_cgam_sum_ax1[k] = np.sum(self.b_cgam[k])

        self.b_cgam_f = np.matmul(self.b_cgam, self.f)
        for k in range(self.n_topics):
            SIGMA_k = np.linalg.inv(self.SIGMA_inv[k])
            self.MU[k] = np.matmul(SIGMA_k, self.b_cgam_f[k])

    def train(self, iters=10):
        for i in range(iters):
            start_time = time.time()
            self._gibbs_sample()
            print("gibbs", time.time() - start_time)

            # start_time = time.time()
            self.log_likelihoods.append(self._compute_total_log_likelihood())
            # print("log_likelihood", time.time() - start_time)

            self.accuracies.append(self.get_classification_accuracy())
        return self.log_likelihoods, self.accuracies

    def _gibbs_sample(self):
        # gibbs_iter_time = time.time()
        for document_index, Z_document in enumerate(self.Z):
            document_length = len(Z_document)
            for token_index, Z_token_pair in enumerate(Z_document):

                # print("gibbs iter", time.time() - gibbs_iter_time)
                # gibbs_iter_time = time.time()
                # print(token_index, "/", document_length, document_index, "/", self.n_documents)

                word_index = Z_token_pair[0]
                topic_assignment = Z_token_pair[1]
                if topic_assignment != WEIFTM.NO_TOPIC:
                    self.n[topic_assignment, word_index] -= 1
                    self.m[document_index, topic_assignment] -= 1

                # start_time = time.time()
                self._sample_b(word_index)
                # print("sample_b", time.time() - start_time)

                # start_time = time.time()
                topic_assignment = self._sample_z(document_index, word_index)
                # print("sample_z", time.time() - start_time)
                Z_token_pair[1] = topic_assignment

                if topic_assignment != WEIFTM.NO_TOPIC:
                    self.n[topic_assignment, word_index] += 1
                    self.m[document_index, topic_assignment] += 1

                # start_time = time.time()
                self._sample_embeddings(word_index)
                # print("sample_embeddings", time.time() - start_time)

    def _sample_b(self, word_index):
        b_not_v = self.b_sum_ax1 - self.b[:, word_index]

        b_not_v[b_not_v == 0] += self.delta_0
        b_not_v_beta = b_not_v * self.beta_0

        num_a = b_not_v_beta + np.sum(self.n, axis=1)
        num_b = self.beta_0
        num = beta_function(num_a, num_b)
        denom = beta_function(b_not_v_beta, self.beta_0)
        activation = sigmoid(self.pi[:, word_index])
        p_1 = num * activation / denom
        p_0 = 1 - activation
        p = p_1 / (p_1 + p_0)

        self.b_sum_ax1 -= self.b[:, word_index]
        self.b[:, word_index] |= np.random.binomial(1, p)
        self.b_sum_ax1 += self.b[:, word_index]

    def _sample_z(self, document_index, word_index):
        if self.b[:, word_index].sum() == 0:
            topic_assignment = WEIFTM.NO_TOPIC
        else:
            p = (self.alpha_0 + self.m[document_index]) * (
                self.n[:, word_index].flatten() +
                self.beta_0) / (self.n[:, word_index] +
                                self.beta_0).sum() * self.b[:, word_index]
            p /= p.sum()
            topic_assignment = np.random.multinomial(1, p).argmax()
        return topic_assignment

    def _sample_embeddings(self, word_index):
        for k in range(self.n_topics):
            # sample gamma
            old_gamma_k_word_index = self.gamma[k, word_index]
            self.gamma[k, word_index] = self.pg.pgdraw(1, self.pi[k,
                                                                  word_index])
            self.gamma_sum_ax1[k] += self.gamma[
                k, word_index] - old_gamma_k_word_index

            # sample lamb
            self.SIGMA_inv[k] += (
                self.gamma[k, word_index] -
                old_gamma_k_word_index) * self.f_outer[word_index]
            SIGMA_k = np.linalg.inv(self.SIGMA_inv[k])

            old_b_cgam_k_word_index = self.b_cgam[k, word_index]
            self.b_cgam[k, word_index] = self.b[
                k, word_index] - .5 - self.c[k] * self.gamma[k, word_index]
            self.b_cgam_sum_ax1[k] += self.b_cgam[
                k, word_index] - old_b_cgam_k_word_index

            self.b_cgam_f[k] = self.b_cgam[k, word_index] * self.f[word_index]
            self.MU[k] = np.matmul(SIGMA_k, self.b_cgam_f[k])

            self.lamb[k] = np.random.multivariate_normal(self.MU[k], SIGMA_k)

            # sample c
            sig_k = (self.gamma_sum_ax1[k] + self.sig_0**-2)**-1
            mu_k = sig_k * self.b_cgam_sum_ax1[k]
            self.c[k] = np.random.normal(mu_k, sig_k)

        # update pi
        self.pi = np.matmul(self.lamb, self.f.T) + self.c

    def dirichlet_pdf_log(self, x, alpha):
        return np.sum(np.log(np.power(x, alpha - 1))) - np.sum(
            np.log(gamma_function(alpha))) + np.log(
                gamma_function(np.sum(alpha)))

    def _compute_total_log_likelihood(self):
        log_likelihood = 0

        theta = self.get_theta()
        log_theta = np.log(theta)
        phi = self.get_phi()
        log_phi = np.log(phi)

        ALPHA = self.alpha_0 * np.ones(self.n_topics)

        for document_index in range(self.n_documents):
            # theta
            # log_likelihood += np.log(dirichlet.pdf(theta[document_index], ALPHA))
            log_likelihood += self.dirichlet_pdf_log(theta[document_index],
                                                     ALPHA)

            for token_index in range(len(self.Z[document_index])):
                word_index, topic_index = self.Z[document_index][token_index]
                if topic_index != WEIFTM.NO_TOPIC:
                    # w
                    log_likelihood += log_phi[topic_index, word_index]
                    # z
                    log_likelihood += log_theta[document_index, topic_index]

        log_likelihood += np.sum(
            np.log(bernoulli.pmf(self.b, sigmoid(self.pi))))

        for k in range(self.n_topics):
            # phi
            b_k_nonzero = self.b[k].nonzero()[0]
            BETA = self.beta_0 * np.ones(b_k_nonzero.shape[0])
            # log_likelihood += np.log(dirichlet.pdf(phi[k][b_k_nonzero], BETA))
            log_likelihood += self.dirichlet_pdf_log(phi[k][b_k_nonzero], BETA)
            # c
            log_likelihood += np.log(norm.pdf(self.c[k], 0, self.sig_0))

            for l in range(self.embedding_size):
                # lamb
                log_likelihood += np.log(
                    norm.pdf(self.lamb[k, l], 0, self.sig_0))

        return log_likelihood

    def get_phi(self):
        n_b = (self.n + self.beta_0) * self.b
        return n_b / n_b.sum(axis=1).reshape(-1, 1)

    def get_theta(self):
        return (self.m + self.alpha_0) / (self.m + self.alpha_0).sum(
            axis=1).reshape(-1, 1)

    def print_phi(self, n_words):
        phi = self.get_phi()
        for topic_index, topic, in enumerate(phi):
            labelled_probabilities = [(self.dictionary[word_index], prob)
                                      for word_index, prob in enumerate(topic)]
            sorted_probabilities = sorted(labelled_probabilities,
                                          key=lambda x: x[1],
                                          reverse=True)[:n_words]
            print('Topic {}:'.format(topic_index), sorted_probabilities)

    def print_theta(self):
        theta = self.get_theta()
        for document_index, document in enumerate(theta):
            print('Document {}:'.format(document_index),
                  '; Label {}'.format(self.labels[document_index]), document)

    def get_classification_accuracy(self):
        theta = self.get_theta()
        predictions = [distribution.argmax() for distribution in theta]
        prediction_set = set(predictions)
        label_set = set(self.labels.values())
        accuracies = []

        if self.n_topics >= len(label_set):
            for tup in itertools.permutations(prediction_set, len(label_set)):
                count = 0.
                for index in self.labels:
                    if tup[self.labels[index]] == predictions[index]:
                        count += 1.
                accuracies.append(count / len(predictions))
        else:
            for tup in itertools.permutations(label_set, self.n_topics):
                count = 0.
                for index in self.labels:
                    if self.labels[index] == tup[predictions[index]]:
                        count += 1.
                accuracies.append(count / len(predictions))

        return max(accuracies)

    def plot(self, values, ylabel, path):
        title = path.strip(os.path.sep).strip('.csv').split(os.path.sep)[-1]
        plt.title(title)
        plt.xlabel('epoch')
        plt.ylabel(ylabel)
        plt.plot(values)
        plt.show()

    def __getstate__(self):
        state = self.__dict__.copy()
        state.pop("pg")
        return state

    def __setstate__(self, state):
        self.__dict__.update(state)

    def save(self, path):
        pickle.dump(self, open(path, "wb"))

    @staticmethod
    def load(path):
        return pickle.load(open(path, "rb"))
Exemple #24
0
class _BaseLogisticRFLVM(_BaseRFLVM):
    def __init__(self, rng, data, n_burn, n_iters, latent_dim, n_clusters,
                 n_rffs, dp_prior_obs, dp_df, disp_prior, bias_var):
        """Initialize base class for logistic RFLVMs.
        """
        # `_BaseRFLVM` will call `_init_specific_params`, and these need to be
        # set first.
        self.disp_prior = disp_prior
        self.bias_var = bias_var

        super().__init__(rng=rng,
                         data=data,
                         n_burn=n_burn,
                         n_iters=n_iters,
                         latent_dim=latent_dim,
                         n_clusters=n_clusters,
                         n_rffs=n_rffs,
                         dp_prior_obs=dp_prior_obs,
                         dp_df=dp_df)

        # Polya-gamma augmentation.
        self.pg = PyPolyaGamma()
        prior_Sigma = np.eye(self.M + 1)
        prior_Sigma[-1, -1] = np.sqrt(self.bias_var)
        self.inv_B = np.linalg.inv(prior_Sigma)
        mu_A_b = np.zeros(self.M + 1)
        self.inv_B_b = self.inv_B @ mu_A_b
        self.omega = np.empty(self.Y.shape)

        # Linear coefficients `beta`.
        b0 = np.zeros(self.M + 1)
        B0 = np.eye(self.M + 1)
        self.beta = self.rng.multivariate_normal(b0, B0, size=self._j_func())

# -----------------------------------------------------------------------------
# Public API.
# -----------------------------------------------------------------------------

    def log_likelihood(self, **kwargs):
        """Generalized, differentiable log likelihood function.
        """
        # This function can be called for two reasons:
        #
        #   1. Optimize the log likelihood w.r.t. `X`.
        #   2. Evaluate the log likelihood w.r.t. a MH-proposed `W`.
        #
        X = kwargs.get('X', self.X)
        W = kwargs.get('W', self.W)

        phi_X = self.phi(X, W, add_bias=True)
        psi = phi_X @ self.beta.T
        LL    = self._log_c_func() \
                + self._a_func() * psi \
                - self._b_func() * np.log(1 + np.exp(psi))

        return LL.sum()

# -----------------------------------------------------------------------------
# Polya-gamma augmentation.
# -----------------------------------------------------------------------------

    def _sample_beta(self):
        """Sample `β|ω ~ N(m, V)`. See (Polson 2013).
        """
        phi_X = self.phi(self.X, self.W, add_bias=True)

        for j in range(self.J):
            # This really computes: phi_X.T @ np.diag(omega[:, j]) @ phi_X
            J = (phi_X * self.omega[:, j][:, None]).T @ phi_X + \
                self.inv_B
            h = phi_X.T @ self._kappa_func(j) + self.inv_B_b
            joint_sample = self._sample_gaussian(J=J, h=h)
            self.beta[j] = joint_sample

    def _sample_omega(self):
        """Sample `ω|β ~ PG(b, x*β)`. See (Polson 2013).
        """
        phi_X = self.phi(self.X, self.W, add_bias=True)
        psi = phi_X @ self.beta.T
        b = self._b_func()
        self.pg.pgdrawv(b.ravel(), psi.ravel(), self.omega.ravel())
        self.omega = self.omega.reshape(self.Y.shape)

    def _a_func(self, j=None):
        """This function returns `a(y)`. See the comment at the top of this
        file and (Polson 2013).
        """
        raise NotImplementedError()

    def _b_func(self, j=None):
        """This function returns `b(y)`. See the comment at the top of this
        file and (Polson 2013).
        """
        raise NotImplementedError()

    def _log_c_func(self):
        """This function returns `log c(y)`. This is the normalizer in logistic
        models and is only used in the log likelihood calculation. See the
        comment at the top of this file and (Polson 2013).
        """
        raise NotImplementedError()

    def _j_func(self):
        """Return number of features to iterate over. This is required because
        multinomial models decompose the multinomial distribution into `J-1`
        binomial distributions.
        """
        raise NotImplementedError()

    def _kappa_func(self, j):
        """This function returns `kappa(y)`. See the comment at the top of this
        file and (Polson 2013).
        """
        return self._a_func(j) - (self._b_func(j) / 2.0)
Exemple #25
0
def s_blk(g_num, b_mu_ll, q_mu, b_v, q_v, b_mat_mu, q_arr, b_mu_lk, b_mat_v,
          ob, g_ij, z_i):
    #sample b_lk q
    n_lk, n_lk1, m_l, m_l1 = get_nlk(ob, g_num, g_ij, z_i)
    for l in range(g_num):
        for k in range(l, g_num):
            samplenum = 100
            if l == k:
                b = np.zeros((samplenum, 2))
                b[0, 0] = b_mu_ll
                b[0, 1] = q_mu
                mu = np.array([b_mu_ll, q_mu])
                var = np.array(([b_v, 0], [0, q_v]))
                pg = PyPolyaGamma(seed=0)
                omegas = np.ones(2)
                x = np.array(([1, 0], [1, 1]))
                k_arr = np.array(
                    [n_lk1[l, l] - n_lk[l, l] / 2, m_l1[l] - m_l[l] / 2])

                for t in range(1, samplenum):

                    omegas[0] = pg.pgdraw(n_lk[l, l], b[t - 1, 0])
                    omegas[1] = pg.pgdraw(m_l[l], np.sum(b[t - 1, :]))
                    omega = np.array(([omegas[0], 0], [0, omegas[1]]))
                    v = inv(
                        np.dot(np.dot(np.transpose(x), omega), x) + inv(var))
                    m = np.dot(
                        v,
                        np.dot(np.transpose(x), np.transpose(k_arr)) +
                        np.dot(inv(var), mu))
                    s = npr.multivariate_normal(m, v)
                    b[t, 0] = np.copy(s[0])
                    b[t, 1] = np.copy(s[1])
                b_mat_mu[l, l] = np.sum(b[50:samplenum, 0]) / (samplenum - 50)
                q_arr[l] = np.sum(b[50:samplenum, 1]) / (samplenum - 50)

            else:
                b = np.zeros((samplenum, 2))
                b[0, 0] = b_mu_lk
                b[0, 1] = b_mu_lk
                mu = np.array([b_mu_lk, b_mu_lk])
                var = np.copy(b_mat_v[:, :, l, k])
                pg = PyPolyaGamma(seed=0)
                omegas = np.ones(2)
                k_arr = np.array([
                    n_lk1[l, k] - n_lk[l, k] / 2, n_lk1[k, l] - n_lk[k, l] / 2
                ])
                x = np.array(([1, 0], [0, 1]))
                for t in range(1, samplenum):
                    omegas[0] = pg.pgdraw(n_lk[l, k], b[t - 1, 0])
                    omegas[1] = pg.pgdraw(n_lk[k, l], b[t - 1, 1])
                    omega = np.array(([omegas[0], 0], [0, omegas[1]]))

                    v = inv(
                        np.dot(np.dot(np.transpose(x), omega), x) + inv(var))
                    m = np.dot(
                        v,
                        np.dot(np.transpose(x), np.transpose(k_arr)) +
                        np.dot(inv(var), mu))
                    s = npr.multivariate_normal(m, v)
                    b[t, 0] = np.copy(s[0])
                    b[t, 1] = np.copy(s[1])
                b_mat_mu[l, k] = np.sum(b[50:samplenum, 0]) / (samplenum - 50)
                b_mat_mu[k, l] = np.sum(b[50:samplenum, 1]) / (samplenum - 50)
Exemple #26
0
 def set_seed(self, seed):
     self.np_random.seed(seed)
     pg_seed = np.random.randint(1, 1 + np.iinfo(np.uint32).max)
     ts_seed = np.random.randint(1, 1 + np.iinfo(np.uint32).max)
     self.pg = PyPolyaGamma(seed=pg_seed)
     self.ts = ExpTiltedStableDist(seed=ts_seed)