def gaussian_prior(params): beta = params[-1:].item() rational_beta = fractions.Fraction(beta) theta = params[:-1] idx = hash(tuple(theta)) % rational_beta.denominator prior = GaussianPrior(mdl1.mu[:-1], mdl1.sigma[:-1])(theta) return numpy.append(prior, beta)
def prior(hypercube): prior = [] for h, pr in zip(hypercube, self.params.p_free_priors): if pr[1] == 'Gaussian': prior.append( GaussianPrior(float(pr[2][0]), float(pr[2][1]))(h)) else: prior.append( UniformPrior(float(pr[2][0]), float(pr[2][2]))(h)) return prior
def mixture_model_prior(params): beta = params[-1:].item() rational_beta = fractions.Fraction(beta) theta = params[:-1] idx = hash(tuple(theta)) % rational_beta.denominator if idx > rational_beta.numerator: prior = UniformPrior(mdl1.a, mdl1.b)(theta) else: prior = GaussianPrior(mdl1.mu[:-1], mdl1.sigma[:-1])(theta) return numpy.append(prior, beta)
def rev_offset_gaussian_prior(params): return numpy.append( GaussianPrior(mdl1.mu[:-1] - 0.3, mdl1.sigma[:-1])(params[:-1]), params[-1:].item())
def bloated_gaussian_prior(params): return numpy.append( GaussianPrior(mdl1.mu[:-1], 3 * mdl1.sigma[:-1])(params[:-1]), params[-1:].item())
def gaussian_prior(hypercube): return GaussianPrior(mu, sigma)(hypercube)
def bloated_gaussian_prior(hypercube): return GaussianPrior(mu, sigmaLL)(hypercube)