Exemple #1
0
    def perform_reference(self):
        """Estimate the true signal mean and interpolate bad channels.

        This function implements the functionality of the `performReference` function
        as part of the PREP pipeline on mne raw object.

        Notes
        -----
            This function calls robust_reference first
            Currently this function only implements the functionality of default settings, i.e., doRobustPost

        """
        # Phase 1: Estimate the true signal mean with robust referencing
        self.robust_reference()
        if self.noisy_channels["bad_all"]:
            self.raw.info["bads"] = self.noisy_channels["bad_all"]
            self.raw.interpolate_bads()
        self.reference_signal = (np.nanmean(
            self.raw.get_data(picks=self.reference_channels), axis=0) * 1e6)
        rereferenced_index = [
            self.ch_names_eeg.index(ch) for ch in self.rereferenced_channels
        ]
        self.EEG = self.remove_reference(self.EEG, self.reference_signal,
                                         rereferenced_index)

        # Phase 2: Find the bad channels and interpolate
        self.raw._data = self.EEG * 1e-6
        noisy_detector = NoisyChannels(self.raw)
        noisy_detector.find_all_bads(ransac=self.ransac)

        # Record Noisy channels and EEG before interpolation
        self.bad_before_interpolation = noisy_detector.get_bads(verbose=True)
        self.EEG_before_interpolation = self.EEG.copy()

        bad_channels = _union(self.bad_before_interpolation,
                              self.unusable_channels)
        self.raw.info["bads"] = bad_channels
        self.raw.interpolate_bads()
        reference_correct = (np.nanmean(
            self.raw.get_data(picks=self.reference_channels), axis=0) * 1e6)
        self.EEG = self.raw.get_data() * 1e6
        self.EEG = self.remove_reference(self.EEG, reference_correct,
                                         rereferenced_index)
        # reference signal after interpolation
        self.reference_signal_new = self.reference_signal + reference_correct
        # MNE Raw object after interpolation
        self.raw._data = self.EEG * 1e-6

        # Still noisy channels after interpolation
        self.interpolated_channels = bad_channels
        noisy_detector = NoisyChannels(self.raw)
        noisy_detector.find_all_bads(ransac=self.ransac)
        self.still_noisy_channels = noisy_detector.get_bads()
        self.raw.info["bads"] = self.still_noisy_channels
        return self
Exemple #2
0
    def fit(self):
        """Run the whole PREP pipeline."""
        noisy_detector = NoisyChannels(self.raw,
                                       random_state=self.random_state)
        noisy_detector.find_bad_by_nan_flat()
        unusable_channels = _union(noisy_detector.bad_by_nan,
                                   noisy_detector.bad_by_flat)
        reference_channels = _set_diff(self.prep_params["ref_chs"],
                                       unusable_channels)
        # Step 1: 1Hz high pass filtering
        self.EEG_new = removeTrend(self.EEG_raw, sample_rate=self.sfreq)

        # Step 2: Removing line noise
        linenoise = self.prep_params["line_freqs"]
        self.EEG_clean = mne.filter.notch_filter(
            self.EEG_new,
            Fs=self.sfreq,
            freqs=linenoise,
            method="spectrum_fit",
            mt_bandwidth=2,
            p_value=0.01,
        )

        # Add Trend back
        self.EEG = self.EEG_raw - self.EEG_new + self.EEG_clean
        self.raw._data = self.EEG * 1e-6

        # Step 3: Referencing
        reference = Reference(self.raw, self.prep_params, ransac=self.ransac)
        reference.perform_reference()
        self.raw = reference.raw
        self.noisy_channels_original = reference.noisy_channels_original
        self.bad_before_interpolation = reference.bad_before_interpolation
        self.EEG_before_interpolation = reference.EEG_before_interpolation
        self.reference_before_interpolation = reference.reference_signal
        self.reference_after_interpolation = reference.reference_signal_new
        self.interpolated_channels = reference.interpolated_channels
        self.still_noisy_channels = reference.still_noisy_channels

        return self
Exemple #3
0
    def robust_reference(self):
        """Detect bad channels and estimate the robust reference signal.

        This function implements the functionality of the `robustReference` function
        as part of the PREP pipeline on mne raw object.

        Parameters
        ----------
            ransac : boolean
                Whether or not to use ransac

        Returns
        -------
            noisy_channels: dictionary
                A dictionary of names of noisy channels detected from all methods after referencing
            reference_signal: 1D Array
                Estimation of the 'true' signal mean

        """
        raw = self.raw.copy()
        raw._data = removeTrend(raw.get_data(), sample_rate=self.sfreq)

        # Determine unusable channels and remove them from the reference channels
        noisy_detector = NoisyChannels(raw, do_detrend=False)
        noisy_detector.find_all_bads(ransac=self.ransac)
        self.noisy_channels_original = {
            "bad_by_nan": noisy_detector.bad_by_nan,
            "bad_by_flat": noisy_detector.bad_by_flat,
            "bad_by_deviation": noisy_detector.bad_by_deviation,
            "bad_by_hf_noise": noisy_detector.bad_by_hf_noise,
            "bad_by_correlation": noisy_detector.bad_by_correlation,
            "bad_by_ransac": noisy_detector.bad_by_ransac,
            "bad_all": noisy_detector.get_bads(),
        }
        self.noisy_channels = self.noisy_channels_original.copy()
        logger.info("Bad channels: {}".format(self.noisy_channels))

        self.unusable_channels = _union(noisy_detector.bad_by_nan,
                                        noisy_detector.bad_by_flat)
        # unusable_channels = _union(unusable_channels, noisy_detector.bad_by_SNR)
        self.reference_channels = _set_diff(self.reference_channels,
                                            self.unusable_channels)

        # Get initial estimate of the reference by the specified method
        signal = raw.get_data() * 1e6
        self.reference_signal = (
            np.nanmedian(raw.get_data(picks=self.reference_channels), axis=0) *
            1e6)
        reference_index = [
            self.ch_names_eeg.index(ch) for ch in self.reference_channels
        ]
        signal_tmp = self.remove_reference(signal, self.reference_signal,
                                           reference_index)

        # Remove reference from signal, iteratively interpolating bad channels
        raw_tmp = raw.copy()

        iterations = 0
        noisy_channels_old = []
        max_iteration_num = 4

        while True:
            raw_tmp._data = signal_tmp * 1e-6
            noisy_detector = NoisyChannels(raw_tmp)
            noisy_detector.find_all_bads(ransac=self.ransac)
            self.noisy_channels["bad_by_nan"] = _union(
                self.noisy_channels["bad_by_nan"], noisy_detector.bad_by_nan)
            self.noisy_channels["bad_by_flat"] = _union(
                self.noisy_channels["bad_by_flat"], noisy_detector.bad_by_flat)
            self.noisy_channels["bad_by_deviation"] = _union(
                self.noisy_channels["bad_by_deviation"],
                noisy_detector.bad_by_deviation)
            self.noisy_channels["bad_by_hf_noise"] = _union(
                self.noisy_channels["bad_by_hf_noise"],
                noisy_detector.bad_by_hf_noise)
            self.noisy_channels["bad_by_correlation"] = _union(
                self.noisy_channels["bad_by_correlation"],
                noisy_detector.bad_by_correlation,
            )
            self.noisy_channels["bad_by_ransac"] = _union(
                self.noisy_channels["bad_by_ransac"],
                noisy_detector.bad_by_ransac)
            self.noisy_channels["bad_all"] = _union(
                self.noisy_channels["bad_all"], noisy_detector.get_bads())
            logger.info("Bad channels: {}".format(self.noisy_channels))

            if (iterations > 1 and (not self.noisy_channels["bad_all"] or set(
                    self.noisy_channels["bad_all"]) == set(noisy_channels_old))
                    or iterations > max_iteration_num):
                break
            noisy_channels_old = self.noisy_channels["bad_all"].copy()

            if raw_tmp.info["nchan"] - len(self.noisy_channels["bad_all"]) < 2:
                raise ValueError(
                    "RobustReference:TooManyBad "
                    "Could not perform a robust reference -- not enough good channels"
                )

            if self.noisy_channels["bad_all"]:
                raw_tmp._data = signal * 1e-6
                raw_tmp.info["bads"] = self.noisy_channels["bad_all"]
                raw_tmp.interpolate_bads()
                signal_tmp = raw_tmp.get_data() * 1e6
            else:
                signal_tmp = signal
            self.reference_signal = (np.nanmean(
                raw_tmp.get_data(picks=self.reference_channels), axis=0) * 1e6)

            signal_tmp = self.remove_reference(signal, self.reference_signal,
                                               reference_index)
            iterations = iterations + 1
            logger.info("Iterations: {}".format(iterations))

        logger.info("Robust reference done")
        return self.noisy_channels, self.reference_signal