def run_suject_level1_glm(
        subject_data,
        readout_time=.01392,  # seconds
        tr=.72,
        dc=True,
        hrf_model="Canonical with Derivative",
        drift_model="Cosine",
        hfcut=100,
        regress_motion=True,
        slicer='ortho',
        cut_coords=None,
        threshold=3.,
        cluster_th=15,
        normalize=True,
        fwhm=0.,
        protocol="MOTOR",
        func_write_voxel_sizes=None,
        anat_write_voxel_sizes=None,
        **other_preproc_kwargs):
    """
    Function to do preproc + analysis for a single HCP subject (task fMRI)

    """

    add_regs_files = None
    n_motion_regressions = 6
    subject_data.n_sessions = 2

    subject_data.tmp_output_dir = os.path.join(subject_data.output_dir, "tmp")
    if not os.path.exists(subject_data.tmp_output_dir):
        os.makedirs(subject_data.tmp_output_dir)

    if not os.path.exists(subject_data.output_dir):
        os.makedirs(subject_data.output_dir)

    mem = Memory(os.path.join(subject_data.output_dir, "cache_dir"),
                 verbose=100)

    # glob design files (.fsf)
    subject_data.design_files = [
        os.path.join(subject_data.data_dir,
                     ("MNINonLinear/Results/tfMRI_%s_%s/"
                      "tfMRI_%s_%s_hp200_s4_level1.fsf") %
                     (protocol, direction, protocol, direction))
        for direction in ['LR', 'RL']
    ]

    assert len(subject_data.design_files) == 2
    for df in subject_data.design_files:
        if not os.path.isfile(df):
            return

    if 0x0:
        subject_data = _do_fmri_distortion_correction(
            subject_data,
            dc=dc,
            fwhm=fwhm,
            readout_time=readout_time,
            **other_preproc_kwargs)

    # chronometry
    stats_start_time = pretty_time()

    # merged lists
    paradigms = []
    frametimes_list = []
    design_matrices = []
    # fmri_files = []
    n_scans = []
    # for direction, direction_index in zip(['LR', 'RL'], xrange(2)):
    for sess in xrange(subject_data.n_sessions):
        direction = ['LR', 'RL'][sess]
        # glob the design file
        # design_file = os.path.join(# _subject_data_dir, "tfMRI_%s_%s" % (
        # protocol, direction),
        design_file = subject_data.design_files[sess]
        #                    "tfMRI_%s_%s_hp200_s4_level1.fsf" % (
        # protocol, direction))
        if not os.path.isfile(design_file):
            print "Can't find design file %s; skipping subject %s" % (
                design_file, subject_data.subject_id)
            return

        # read the experimental setup
        print "Reading experimental setup from %s ..." % design_file
        fsl_condition_ids, timing_files, fsl_contrast_ids, contrast_values = \
            read_fsl_design_file(design_file)
        print "... done.\r\n"

        # fix timing filenames
        timing_files = [
            tf.replace("EVs", "tfMRI_%s_%s/EVs" % (protocol, direction))
            for tf in timing_files
        ]

        # make design matrix
        print "Constructing design matrix for direction %s ..." % direction
        _n_scans = nibabel.load(subject_data.func[sess]).shape[-1]
        n_scans.append(_n_scans)
        add_regs_file = add_regs_files[
            sess] if not add_regs_files is None else None
        design_matrix, paradigm, frametimes = make_dmtx_from_timing_files(
            timing_files,
            fsl_condition_ids,
            n_scans=_n_scans,
            tr=tr,
            hrf_model=hrf_model,
            drift_model=drift_model,
            hfcut=hfcut,
            add_regs_file=add_regs_file,
            add_reg_names=[
                'Translation along x axis', 'Translation along yaxis',
                'Translation along z axis', 'Rotation along x axis',
                'Rotation along y axis', 'Rotation along z axis',
                'Differential Translation along x axis',
                'Differential Translation along yaxis',
                'Differential Translation along z axis',
                'Differential Rotation along x axis',
                'Differential Rotation along y axis',
                'Differential Rotation along z axis'
            ][:n_motion_regressions] if not add_regs_files is None else None,
        )

        print "... done."
        paradigms.append(paradigm)
        frametimes_list.append(frametimes)
        design_matrices.append(design_matrix)

        # convert contrasts to dict
        contrasts = dict((
            contrast_id,
            # append zeros to end of contrast to match design
            np.hstack((
                contrast_value,
                np.zeros(len(design_matrix.names) - len(contrast_value)))))
                         for contrast_id, contrast_value in zip(
                             fsl_contrast_ids, contrast_values))

        # more interesting contrasts
        if protocol == 'MOTOR':
            contrasts['RH-LH'] = contrasts['RH'] - contrasts['LH']
            contrasts['LH-RH'] = -contrasts['RH-LH']
            contrasts['RF-LF'] = contrasts['RF'] - contrasts['LF']
            contrasts['LF-RF'] = -contrasts['RF-LF']
            contrasts['H'] = contrasts['RH'] + contrasts['LH']
            contrasts['F'] = contrasts['RF'] + contrasts['LF']
            contrasts['H-F'] = contrasts['RH'] + contrasts['LH'] - (
                contrasts['RF'] - contrasts['LF'])
            contrasts['F-H'] = -contrasts['H-F']

        contrasts = dict((k, v) for k, v in contrasts.iteritems() if "-" in k)

    # replicate contrasts across sessions
    contrasts = dict((cid, [cval] * 2) for cid, cval in contrasts.iteritems())

    cache_dir = cache_dir = os.path.join(subject_data.output_dir, 'cache_dir')
    if not os.path.exists(cache_dir):
        os.makedirs(cache_dir)
    nipype_mem = NipypeMemory(base_dir=cache_dir)

    if 0x0:
        if np.sum(fwhm) > 0.:
            subject_data.func = nipype_mem.cache(spm.Smooth)(
                in_files=subject_data.func,
                fwhm=fwhm,
                ignore_exception=False,
            ).outputs.smoothed_files

    # fit GLM
    def tortoise(*args):
        print args
        print(
            'Fitting a "Fixed Effect" GLM for merging LR and RL '
            'phase-encoding directions for subject %s ...' %
            (subject_data.subject_id))
        fmri_glm = FMRILinearModel(
            subject_data.func,
            [design_matrix.matrix for design_matrix in design_matrices],
            mask='compute')
        fmri_glm.fit(do_scaling=True, model='ar1')
        print "... done.\r\n"

        # save computed mask
        mask_path = os.path.join(subject_data.output_dir, "mask.nii")
        print "Saving mask image to %s ..." % mask_path
        nibabel.save(fmri_glm.mask, mask_path)
        print "... done.\r\n"

        z_maps = {}
        effects_maps = {}
        map_dirs = {}
        try:
            for contrast_id, contrast_val in contrasts.iteritems():
                print "\tcontrast id: %s" % contrast_id
                z_map, eff_map = fmri_glm.contrast(contrast_val,
                                                   con_id=contrast_id,
                                                   output_z=True,
                                                   output_effects=True)

                # store stat maps to disk
                for map_type, out_map in zip(['z', 'effects'],
                                             [z_map, eff_map]):
                    map_dir = os.path.join(subject_data.output_dir,
                                           '%s_maps' % map_type)
                    map_dirs[map_type] = map_dir
                    if not os.path.exists(map_dir):
                        os.makedirs(map_dir)
                    map_path = os.path.join(
                        map_dir, '%s_%s.nii' % (map_type, contrast_id))
                    print "\t\tWriting %s ..." % map_path

                    nibabel.save(out_map, map_path)

                    # collect zmaps for contrasts we're interested in
                    if map_type == 'z':
                        z_maps[contrast_id] = map_path

                    if map_type == 'effects':
                        effects_maps[contrast_id] = map_path

            return effects_maps, z_maps, mask_path, map_dirs
        except:
            return None

    # compute native-space maps and mask
    stuff = mem.cache(tortoise)(subject_data.func, subject_data.anat)
    if stuff is None:
        return None
    effects_maps, z_maps, mask_path, map_dirs = stuff

    # remove repeated contrasts
    contrasts = dict((cid, cval[0]) for cid, cval in contrasts.iteritems())
    import json
    json.dump(
        dict((k, list(v)) for k, v in contrasts.iteritems()),
        open(os.path.join(subject_data.tmp_output_dir, "contrasts.json"), "w"))
    subject_data.contrasts = contrasts

    if normalize:
        assert hasattr(subject_data, "parameter_file")

        subject_data.native_effects_maps = effects_maps
        subject_data.native_z_maps = z_maps
        subject_data.native_mask_path = mask_path

        # warp effects maps and mask from native to standard space (MNI)
        apply_to_files = [
            v for _, v in subject_data.native_effects_maps.iteritems()
        ] + [subject_data.native_mask_path]
        tmp = nipype_mem.cache(spm.Normalize)(
            parameter_file=getattr(subject_data, "parameter_file"),
            apply_to_files=apply_to_files,
            write_bounding_box=[[-78, -112, -50], [78, 76, 85]],
            write_voxel_sizes=func_write_voxel_sizes,
            write_wrap=[0, 0, 0],
            write_interp=1,
            jobtype='write',
            ignore_exception=False,
        ).outputs.normalized_files

        subject_data.mask = hard_link(tmp[-1], subject_data.output_dir)
        subject_data.effects_maps = dict(
            zip(effects_maps.keys(), hard_link(tmp[:-1], map_dirs["effects"])))

        # warp anat image
        subject_data.anat = hard_link(
            nipype_mem.cache(spm.Normalize)(
                parameter_file=getattr(subject_data, "parameter_file"),
                apply_to_files=subject_data.anat,
                write_bounding_box=[[-78, -112, -50], [78, 76, 85]],
                write_voxel_sizes=anat_write_voxel_sizes,
                write_wrap=[0, 0, 0],
                write_interp=1,
                jobtype='write',
                ignore_exception=False,
            ).outputs.normalized_files, subject_data.anat_output_dir)
    else:
        subject_data.mask = mask_path
        subject_data.effects_maps = effects_maps
        subject_data.z_maps = z_maps

    return subject_data
def do_glm_for_subject(subject_id, bold_base_folder, trial_base_folder,
                       output_base_folder):

    subject_dir = path(bold_base_folder) / ("sub%03d" % subject_id)
    output_dir = (path(output_base_folder) / ("sub%03d" % subject_id) /
                  "model001")
    print output_dir
    if not output_dir.exists():
        output_dir.makedirs()


    anat_file = subject_dir / "highres001.nii"
    anat = nb.load(anat_file)
    run_ids = range(1, 10)

    task_bold_files = [subject_dir.glob("task001_run%03d/rbold*.nii"
                                        % rid)[0]
                       for rid in run_ids]
    task_mvt_files = [subject_dir.glob("task001_run%03d/rp_bold*.txt" % 
                                       rid)[0]
                      for rid in run_ids]

    trial_files = [(path(trial_base_folder) / ("Sub%02d" % subject_id) /
                   "BOLD" / "Trials" / ("run_%02d_spmdef.txt" % rid))
                   for rid in range(1, 10)]
    stats_start_time = pretty_time()
    paradigms = []
    design_matrices = []
    n_scans = []
    all_frametimes = []
    list_of_contrast_dicts = []  # one dict per run

    for bold_file, mvt_file, trial_file in zip(task_bold_files, 
                                               task_mvt_files,
                                               trial_files):

        _n_scans = nb.load(bold_file).shape[-1]
        n_scans.append(_n_scans)
        paradigm = make_paradigm(trial_file)
        paradigms.append(paradigm)
        movements = np.loadtxt(mvt_file)

        tr = 2.
        drift_model = "Cosine"
        hrf_model = "Canonical With Derivative"
        hfcut = 128.

        frametimes = np.linspace(0, (_n_scans - 1) * tr, _n_scans)

        design_matrix = make_dmtx(
            frametimes,
            paradigm,
            hrf_model=hrf_model,
            drift_model=drift_model,
            hfcut=hfcut,
            add_regs=movements,
            add_reg_names=[
                "Tx", "Ty", "Tz", "R1", "R2", "R3"])

        design_matrices.append(design_matrix)
        all_frametimes.append(frametimes)

        # specify contrasts
        contrasts = {}
        n_columns = len(design_matrix.names)
        for i in xrange(paradigm.n_conditions):
            contrasts['%s' % design_matrix.names[2 * i]] = np.eye(
                n_columns)[2 * i]

        # more interesting contrasts"""
        contrasts['Famous-Unfamiliar'] = contrasts[
            'Famous'] - contrasts['Unfamiliar']
        contrasts['Unfamiliar-Famous'] = -contrasts['Famous-Unfamiliar']
        contrasts['Famous-Scrambled'] = contrasts[
            'Famous'] - contrasts['Scrambled']
        contrasts['Scrambled-Famous'] = -contrasts['Famous-Scrambled']
        contrasts['Unfamiliar-Scrambled'] = contrasts[
            'Unfamiliar'] - contrasts['Scrambled']
        contrasts['Scrambled-Unfamiliar'] = -contrasts['Unfamiliar-Scrambled']

        list_of_contrast_dicts.append(contrasts)


    # importat maps
    z_maps = {}
    effects_maps = {}

    fmri_glm = FMRILinearModel(task_bold_files,
                               [dm.matrix for dm in design_matrices],
                               mask="compute")
    fmri_glm.fit(do_scaling=True, model="ar1")

    # replicate contrasts across runs
    contrasts = dict((cid, [contrasts[cid]
                            for contrasts in list_of_contrast_dicts])
                     for cid, cval in contrasts.iteritems())

    # compute effects
    for contrast_id, contrast_val in contrasts.iteritems():
        print "\tcontrast id: %s" % contrast_id
        z_map, eff_map, var_map = fmri_glm.contrast(
            contrast_val,
            con_id=contrast_id,
            output_z=True,
            output_stat=False,
            output_effects=True,
            output_variance=True
            )

        for map_type, out_map in zip(['z', 'effects', 'variance'], 
                                     [z_map, eff_map, var_map]):
            map_dir = output_dir / ('%s_maps' % map_type)
            if not map_dir.exists():
                map_dir.makedirs()
            map_path = map_dir / ('%s.nii.gz' % contrast_id)
            print "\t\tWriting %s ..." % map_path
            nb.save(out_map, map_path)

            # collect zmaps for contrasts we're interested in
            if map_type == 'z':
                z_maps[contrast_id] = map_path

            if map_type == 'effects':
                effects_maps[contrast_id] = map_path

            if map_type == "variance":
                effects_maps[contrast_id] = map_path

    stats_report_dir = output_dir / "report"
    if not stats_report_dir.exists():
        stats_report_dir.makedirs()

    stats_report_filename = stats_report_dir / "report_stats.html"
    # remove repeated contrasts
    contrasts = dict((cid, cval[0]) for cid, cval in contrasts.iteritems())

    slicer = 'z'
    cut_coords = [-20, -10, 0, 10, 20, 30, 40, 50]
    threshold = 3.
    cluster_th = 15


    generate_subject_stats_report(
        stats_report_filename,
        contrasts,
        z_maps,
        fmri_glm.mask,
        anat_affine=anat.get_affine(),
        anat=anat.get_data(),
        threshold=threshold,
        cluster_th=cluster_th,
        slicer=slicer,
        cut_coords=cut_coords,
        design_matrices=design_matrices,
        subject_id="sub%03d" % subject_id,
        start_time=stats_start_time,
        title="GLM for subject %s" % ("sub%03d" % subject_id),

        # additional ``kwargs`` for more informative report
        TR=tr,
        n_scans=n_scans,
        hfcut=hfcut,
        drift_model=drift_model,
        hrf_model=hrf_model,
        paradigm=dict(("Run_%02i" % (run_id), paradigms[run_id - 1])
                      for run_id in run_ids),
        frametimes=dict(("Run_%02i" % (run_id), all_frametimes[run_id - 1])
                        for run_id in run_ids),
        # fwhm=fwhm
        )

    return fmri_glm
            "fwhm": fwhm
        }
        n_jobs = int(os.environ.get('N_JOBS', 1))
        if n_jobs > 1:
            subjects = Parallel(n_jobs=n_jobs, verbose=100)(
                delayed(run_suject_level1_glm)(subject_data, **kwargs)
                for subject_data in subjects)
        else:
            subjects = [
                run_suject_level1_glm(subject_data, **kwargs)
                for subject_data in subjects
            ]
        subjects = [subject for subject in subjects if subject]

        # level 2
        stats_start_time = pretty_time()
        mask_images = [subject_data.mask for subject_data in subjects]
        group_mask = nibabel.Nifti1Image(
            intersect_masks(mask_images).astype(np.int8),
            nibabel.load(mask_images[0]).get_affine())
        nibabel.save(group_mask, os.path.join(task_output_dir, "mask.nii.gz"))

        print "... done.\r\n"
        print "Group GLM"
        contrasts = subjects[0].contrasts
        subjects_effects_maps = [
            subject_data.effects_maps for subject_data in subjects
        ]

        group_one_sample_t_test(
            mask_images,
def _preprocess_and_analysis_subject(subject_data,
                                     do_normalize=False,
                                     fwhm=0.,
                                     slicer='z',
                                     cut_coords=6,
                                     threshold=3.,
                                     cluster_th=15
                                     ):
    """
    Preprocesses the subject and then fits (mass-univariate) GLM thereupon.

    """

    # sanitize run_ids:
    # Sub14/BOLD/Run_02/fMR09029-0004-00010-000010-01.nii is garbage,

    # for example
    run_ids = range(9)
    if subject_data['subject_id'] == "Sub14":
        run_ids = [0] + range(2, 9)
        subject_data['func'] = [subject_data['func'][0]] + subject_data[
            'func'][2:]
        subject_data['session_id'] = [subject_data['session_id'][0]
                                      ] + subject_data['session_id'][2:]

    # sanitize subject output dir
    if not 'output_dir' in subject_data:
        subject_data['output_dir'] = os.path.join(
            output_dir, subject_data['subject_id'])

    # preprocess the data
    subject_data = do_subject_preproc(SubjectData(**subject_data),
                                      do_realign=True,
                                      do_coreg=True,
                                      do_report=False,
                                      do_cv_tc=False
                                      )
    assert not subject_data.anat is None

    # norm
    if do_normalize:
        subject_data = nipype_do_subject_preproc(
            subject_data,
            do_realign=False,
            do_coreg=False,
            do_segment=True,
            do_normalize=True,
            func_write_voxel_sizes=[3, 3, 3],
            anat_write_voxel_sizes=[2, 2, 2],
            fwhm=fwhm,
            hardlink_output=False,
            do_report=False
            )

    # chronometry
    stats_start_time = pretty_time()

    # to-be merged lists, one item per run
    paradigms = []
    frametimes_list = []
    design_matrices = []  # one
    list_of_contrast_dicts = []  # one dict per run
    n_scans = []
    for run_id in run_ids:
        _n_scans = len(subject_data.func[run_id])
        n_scans.append(_n_scans)

        # make paradigm
        paradigm = make_paradigm(getattr(subject_data, 'timing')[run_id])

        # make design matrix
        tr = 2.
        drift_model = 'Cosine'
        hrf_model = 'Canonical With Derivative'
        hfcut = 128.
        frametimes = np.linspace(0, (_n_scans - 1) * tr, _n_scans)
        design_matrix = make_dmtx(
            frametimes,
            paradigm, hrf_model=hrf_model,
            drift_model=drift_model, hfcut=hfcut,
            add_regs=np.loadtxt(getattr(subject_data,
                                        'realignment_parameters')[run_id]),
            add_reg_names=[
                'Translation along x axis',
                'Translation along yaxis',
                'Translation along z axis',
                'Rotation along x axis',
                'Rotation along y axis',
                'Rotation along z axis'
                ]
            )

        # import matplotlib.pyplot as plt
        # design_matrix.show()
        # plt.show()

        paradigms.append(paradigm)
        design_matrices.append(design_matrix)
        frametimes_list.append(frametimes)
        n_scans.append(_n_scans)

        # specify contrasts
        contrasts = {}
        n_columns = len(design_matrix.names)
        for i in xrange(paradigm.n_conditions):
            contrasts['%s' % design_matrix.names[2 * i]] = np.eye(
                n_columns)[2 * i]

        # more interesting contrasts"""
        contrasts['Famous-Unfamiliar'] = contrasts[
            'Famous'] - contrasts['Unfamiliar']
        contrasts['Unfamiliar-Famous'] = -contrasts['Famous-Unfamiliar']
        contrasts['Famous-Scrambled'] = contrasts[
            'Famous'] - contrasts['Scrambled']
        contrasts['Scrambled-Famous'] = -contrasts['Famous-Scrambled']
        contrasts['Unfamiliar-Scrambled'] = contrasts[
            'Unfamiliar'] - contrasts['Scrambled']
        contrasts['Scrambled-Unfamiliar'] = -contrasts['Unfamiliar-Scrambled']

        list_of_contrast_dicts.append(contrasts)

    # importat maps
    z_maps = {}
    effects_maps = {}

    # fit GLM
    print('\r\nFitting a GLM (this takes time) ..')
    fmri_glm = FMRILinearModel([nibabel.concat_images(sess_func)
                                for sess_func in subject_data.func],
                               [design_matrix.matrix
                                for design_matrix in design_matrices],
                               mask='compute')
    fmri_glm.fit(do_scaling=True, model='ar1')

    print "... done.\r\n"

    # save computed mask
    mask_path = os.path.join(subject_data.output_dir, "mask.nii.gz")

    print "Saving mask image to %s ..." % mask_path
    nibabel.save(fmri_glm.mask, mask_path)
    print "... done.\r\n"

    # replicate contrasts across runs
    contrasts = dict((cid, [contrasts[cid]
                            for contrasts in list_of_contrast_dicts])
                     for cid, cval in contrasts.iteritems())

    # compute effects
    for contrast_id, contrast_val in contrasts.iteritems():
        print "\tcontrast id: %s" % contrast_id
        z_map, eff_map = fmri_glm.contrast(
            contrast_val,
            con_id=contrast_id,
            output_z=True,
            output_stat=False,
            output_effects=True,
            output_variance=False
            )

        # store stat maps to disk
        for map_type, out_map in zip(['z', 'effects'], [z_map, eff_map]):
            map_dir = os.path.join(
                subject_data.output_dir, '%s_maps' % map_type)
            if not os.path.exists(map_dir):
                os.makedirs(map_dir)
            map_path = os.path.join(
                map_dir, '%s.nii.gz' % contrast_id)
            print "\t\tWriting %s ..." % map_path
            nibabel.save(out_map, map_path)

            # collect zmaps for contrasts we're interested in
            if map_type == 'z':
                z_maps[contrast_id] = map_path

            if map_type == 'effects':
                effects_maps[contrast_id] = map_path

    # remove repeated contrasts
    contrasts = dict((cid, cval[0]) for cid, cval in contrasts.iteritems())

    # do stats report
    stats_report_filename = os.path.join(getattr(subject_data,
                                                 'reports_output_dir',
                                                 subject_data.output_dir),
                                         "report_stats.html")
    generate_subject_stats_report(
        stats_report_filename,
        contrasts,
        z_maps,
        fmri_glm.mask,
        threshold=threshold,
        cluster_th=cluster_th,
        slicer=slicer,
        cut_coords=cut_coords,
        anat=nibabel.load(subject_data.anat).get_data(),
        anat_affine=nibabel.load(subject_data.anat).get_affine(),
        design_matrices=design_matrices,
        subject_id=subject_data.subject_id,
        start_time=stats_start_time,
        title="GLM for subject %s" % subject_data.subject_id,

        # additional ``kwargs`` for more informative report
        TR=tr,
        n_scans=n_scans,
        hfcut=hfcut,
        drift_model=drift_model,
        hrf_model=hrf_model,
        paradigm=dict(("Run_%02i" % (run_id + 1), paradigms[run_id].__dict__)
                      for run_id in run_ids),
        frametimes=dict(("Run_%02i" % (run_id + 1), frametimes_list[run_id])
                        for run_id in run_ids),
        # fwhm=fwhm
        )

    ProgressReport().finish_dir(subject_data.output_dir)
    print "\r\nStatistic report written to %s\r\n" % stats_report_filename

    return contrasts, effects_maps, z_maps, mask_path
    # to form input for group-level analysis
    n_jobs = int(os.environ.get('N_JOBS', -1))
    group_glm_inputs = Parallel(n_jobs=n_jobs, verbose=100)(delayed(
            _preprocess_and_analysis_subject)(
            get_subject_data_from_disk("Sub%02i" % (subject_id + 1)),
            do_normalize=True,
            fwhm=[8., 8., 8.],
            threshold=threshold,
            slicer=slicer,
            cut_coords=cut_coords,
            cluster_th=cluster_th
            ) for subject_id in range(
            16))

    # chronometry
    stats_start_time = pretty_time()

    # compute group mask
    print "\r\nComputing group mask ..."
    mask_images = [subject_glm_results[3]
                   for subject_glm_results in group_glm_inputs]
    group_mask = nibabel.Nifti1Image(intersect_masks(mask_images
                                                   ).astype(np.uint8),
                                   nibabel.load(mask_images[0]
                                                ).get_affine())
    print "... done.\r\n"
    print "Group GLM"
    contrasts = [
        subject_glm_results
        for subject_glm_results in group_glm_inputs]
    contrasts = group_glm_inputs[0][0]
def run_suject_level1_glm(subject_data,
                          readout_time=.01392,  # seconds
                          tr=.72,
                          dc=True,
                          hrf_model="Canonical with Derivative",
                          drift_model="Cosine",
                          hfcut=100,
                          regress_motion=True,
                          slicer='ortho',
                          cut_coords=None,
                          threshold=3.,
                          cluster_th=15,
                          normalize=True,
                          fwhm=0.,
                          protocol="MOTOR",
                          func_write_voxel_sizes=None,
                          anat_write_voxel_sizes=None,
                          **other_preproc_kwargs
                          ):
    """
    Function to do preproc + analysis for a single HCP subject (task fMRI)

    """

    add_regs_files = None
    n_motion_regressions = 6
    subject_data.n_sessions = 2

    subject_data.tmp_output_dir = os.path.join(subject_data.output_dir, "tmp")
    if not os.path.exists(subject_data.tmp_output_dir):
        os.makedirs(subject_data.tmp_output_dir)

    if not os.path.exists(subject_data.output_dir):
        os.makedirs(subject_data.output_dir)

    mem = Memory(os.path.join(subject_data.output_dir, "cache_dir"),
                 verbose=100)

    # glob design files (.fsf)
    subject_data.design_files = [os.path.join(
            subject_data.data_dir, ("MNINonLinear/Results/tfMRI_%s_%s/"
                                    "tfMRI_%s_%s_hp200_s4_level1.fsf") % (
                protocol, direction, protocol, direction))
            for direction in ['LR', 'RL']]

    assert len(subject_data.design_files) == 2
    for df in subject_data.design_files:
        if not os.path.isfile(df):
            return

    if 0x0:
        subject_data = _do_fmri_distortion_correction(
            subject_data, dc=dc, fwhm=fwhm, readout_time=readout_time,
            **other_preproc_kwargs)

    # chronometry
    stats_start_time = pretty_time()

    # merged lists
    paradigms = []
    frametimes_list = []
    design_matrices = []
    # fmri_files = []
    n_scans = []
    # for direction, direction_index in zip(['LR', 'RL'], xrange(2)):
    for sess in xrange(subject_data.n_sessions):
        direction = ['LR', 'RL'][sess]
        # glob the design file
        # design_file = os.path.join(# _subject_data_dir, "tfMRI_%s_%s" % (
                # protocol, direction),
        design_file = subject_data.design_files[sess]
                #                    "tfMRI_%s_%s_hp200_s4_level1.fsf" % (
                # protocol, direction))
        if not os.path.isfile(design_file):
            print "Can't find design file %s; skipping subject %s" % (
                design_file, subject_data.subject_id)
            return

        # read the experimental setup
        print "Reading experimental setup from %s ..." % design_file
        fsl_condition_ids, timing_files, fsl_contrast_ids, contrast_values = \
            read_fsl_design_file(design_file)
        print "... done.\r\n"

        # fix timing filenames
        timing_files = [tf.replace("EVs", "tfMRI_%s_%s/EVs" % (
                    protocol, direction)) for tf in timing_files]

        # make design matrix
        print "Constructing design matrix for direction %s ..." % direction
        _n_scans = nibabel.load(subject_data.func[sess]).shape[-1]
        n_scans.append(_n_scans)
        add_regs_file = add_regs_files[
            sess] if not add_regs_files is None else None
        design_matrix, paradigm, frametimes = make_dmtx_from_timing_files(
            timing_files, fsl_condition_ids, n_scans=_n_scans, tr=tr,
            hrf_model=hrf_model, drift_model=drift_model, hfcut=hfcut,
            add_regs_file=add_regs_file,
            add_reg_names=[
                'Translation along x axis',
                'Translation along yaxis',
                'Translation along z axis',
                'Rotation along x axis',
                'Rotation along y axis',
                'Rotation along z axis',
                'Differential Translation along x axis',
                'Differential Translation along yaxis',
                'Differential Translation along z axis',
                'Differential Rotation along x axis',
                'Differential Rotation along y axis',
                'Differential Rotation along z axis'
                ][:n_motion_regressions] if not add_regs_files is None
            else None,
            )

        print "... done."
        paradigms.append(paradigm)
        frametimes_list.append(frametimes)
        design_matrices.append(design_matrix)

        # convert contrasts to dict
        contrasts = dict((contrast_id,
                          # append zeros to end of contrast to match design
                          np.hstack((contrast_value, np.zeros(len(
                                design_matrix.names) - len(contrast_value)))))

                         for contrast_id, contrast_value in zip(
                fsl_contrast_ids, contrast_values))

        # more interesting contrasts
        if protocol == 'MOTOR':
            contrasts['RH-LH'] = contrasts['RH'] - contrasts['LH']
            contrasts['LH-RH'] = -contrasts['RH-LH']
            contrasts['RF-LF'] = contrasts['RF'] - contrasts['LF']
            contrasts['LF-RF'] = -contrasts['RF-LF']
            contrasts['H'] = contrasts['RH'] + contrasts['LH']
            contrasts['F'] = contrasts['RF'] + contrasts['LF']
            contrasts['H-F'] = contrasts['RH'] + contrasts['LH'] - (
                contrasts['RF'] - contrasts['LF'])
            contrasts['F-H'] = -contrasts['H-F']

        contrasts = dict((k, v) for k, v in contrasts.iteritems() if "-" in k)

    # replicate contrasts across sessions
    contrasts = dict((cid, [cval] * 2)
                     for cid, cval in contrasts.iteritems())

    cache_dir = cache_dir = os.path.join(subject_data.output_dir,
                                         'cache_dir')
    if not os.path.exists(cache_dir):
        os.makedirs(cache_dir)
    nipype_mem = NipypeMemory(base_dir=cache_dir)

    if 0x0:
        if np.sum(fwhm) > 0.:
            subject_data.func = nipype_mem.cache(spm.Smooth)(
                in_files=subject_data.func,
                fwhm=fwhm,
                ignore_exception=False,
                ).outputs.smoothed_files

    # fit GLM
    def tortoise(*args):
        print args
        print (
            'Fitting a "Fixed Effect" GLM for merging LR and RL '
            'phase-encoding directions for subject %s ...' % (
                subject_data.subject_id))
        fmri_glm = FMRILinearModel(subject_data.func,
                                   [design_matrix.matrix
                                    for design_matrix in design_matrices],
                                   mask='compute'
                                   )
        fmri_glm.fit(do_scaling=True, model='ar1')
        print "... done.\r\n"

        # save computed mask
        mask_path = os.path.join(subject_data.output_dir, "mask.nii")
        print "Saving mask image to %s ..." % mask_path
        nibabel.save(fmri_glm.mask, mask_path)
        print "... done.\r\n"

        z_maps = {}
        effects_maps = {}
        map_dirs = {}
        try:
            for contrast_id, contrast_val in contrasts.iteritems():
                print "\tcontrast id: %s" % contrast_id
                z_map, eff_map = fmri_glm.contrast(
                    contrast_val,
                    con_id=contrast_id,
                    output_z=True,
                    output_effects=True
                    )

                # store stat maps to disk
                for map_type, out_map in zip(['z', 'effects'],
                                             [z_map, eff_map]):
                    map_dir = os.path.join(
                        subject_data.output_dir, '%s_maps' % map_type)
                    map_dirs[map_type] = map_dir
                    if not os.path.exists(map_dir):
                        os.makedirs(map_dir)
                    map_path = os.path.join(
                        map_dir, '%s_%s.nii' % (map_type, contrast_id))
                    print "\t\tWriting %s ..." % map_path

                    nibabel.save(out_map, map_path)

                    # collect zmaps for contrasts we're interested in
                    if map_type == 'z':
                        z_maps[contrast_id] = map_path

                    if map_type == 'effects':
                        effects_maps[contrast_id] = map_path

            return effects_maps, z_maps, mask_path, map_dirs
        except:
            return None

    # compute native-space maps and mask
    stuff = mem.cache(tortoise)(
        subject_data.func, subject_data.anat)
    if stuff is None:
        return None
    effects_maps, z_maps, mask_path, map_dirs = stuff

    # remove repeated contrasts
    contrasts = dict((cid, cval[0]) for cid, cval in contrasts.iteritems())
    import json
    json.dump(dict((k, list(v)) for k, v in contrasts.iteritems()),
              open(os.path.join(subject_data.tmp_output_dir,
                                "contrasts.json"), "w"))
    subject_data.contrasts = contrasts

    if normalize:
        assert hasattr(subject_data, "parameter_file")

        subject_data.native_effects_maps = effects_maps
        subject_data.native_z_maps = z_maps
        subject_data.native_mask_path = mask_path

        # warp effects maps and mask from native to standard space (MNI)
        apply_to_files = [
            v for _, v in subject_data.native_effects_maps.iteritems()
            ] + [subject_data.native_mask_path]
        tmp = nipype_mem.cache(spm.Normalize)(
            parameter_file=getattr(subject_data, "parameter_file"),
            apply_to_files=apply_to_files,
            write_bounding_box=[[-78, -112, -50], [78, 76, 85]],
            write_voxel_sizes=func_write_voxel_sizes,
            write_wrap=[0, 0, 0],
            write_interp=1,
            jobtype='write',
            ignore_exception=False,
            ).outputs.normalized_files

        subject_data.mask = hard_link(tmp[-1], subject_data.output_dir)
        subject_data.effects_maps = dict(zip(effects_maps.keys(), hard_link(
                    tmp[:-1], map_dirs["effects"])))

        # warp anat image
        subject_data.anat = hard_link(nipype_mem.cache(spm.Normalize)(
                parameter_file=getattr(subject_data, "parameter_file"),
                apply_to_files=subject_data.anat,
                write_bounding_box=[[-78, -112, -50], [78, 76, 85]],
                write_voxel_sizes=anat_write_voxel_sizes,
                write_wrap=[0, 0, 0],
                write_interp=1,
                jobtype='write',
                ignore_exception=False,
                ).outputs.normalized_files, subject_data.anat_output_dir)
    else:
        subject_data.mask = mask_path
        subject_data.effects_maps = effects_maps
        subject_data.z_maps = z_maps

    return subject_data
Exemple #7
0
def _preprocess_and_analysis_subject(subject_data,
                                     slicer='z',
                                     cut_coords=6,
                                     threshold=3.,
                                     cluster_th=15,
                                     **preproc_params):
    """
    Preprocesses the subject and then fits (mass-univariate) GLM thereup.

    """

    # sanitize run_ids:
    # Sub14/BOLD/Run_02/fMR09029-0004-00010-000010-01.nii is garbage,

    # for example
    run_ids = range(9)
    if subject_data['subject_id'] == "Sub14":
        run_ids = [0] + range(2, 9)
        subject_data['func'] = [subject_data['func'][0]
                                ] + subject_data['func'][2:]
        subject_data['session_id'] = [subject_data['session_id'][0]
                                      ] + subject_data['session_id'][2:]

    # sanitize subject output dir
    if not 'output_dir' in subject_data:
        subject_data['output_dir'] = os.path.join(output_dir,
                                                  subject_data['subject_id'])

    # preprocess the data
    subject_data = do_subject_preproc(subject_data, **preproc_params)
    # chronometry
    stats_start_time = pretty_time()

    # to-be merged lists, one item per run
    paradigms = []
    frametimes_list = []
    design_matrices = []  # one
    list_of_contrast_dicts = []  # one dict per run
    n_scans = []
    for run_id in run_ids:
        _n_scans = len(subject_data.func[run_id])
        n_scans.append(_n_scans)

        # make paradigm
        paradigm = make_paradigm(getattr(subject_data, 'timing')[run_id])

        # make design matrix
        tr = 2.
        drift_model = 'Cosine'
        hrf_model = 'Canonical With Derivative'
        hfcut = 128.
        frametimes = np.linspace(0, (_n_scans - 1) * tr, _n_scans)
        design_matrix = make_dmtx(
            frametimes,
            paradigm,
            hrf_model=hrf_model,
            drift_model=drift_model,
            hfcut=hfcut,
            add_regs=np.loadtxt(
                getattr(subject_data, 'realignment_parameters')[run_id]),
            add_reg_names=[
                'Translation along x axis', 'Translation along yaxis',
                'Translation along z axis', 'Rotation along x axis',
                'Rotation along y axis', 'Rotation along z axis'
            ])

        # import matplotlib.pyplot as plt
        # design_matrix.show()
        # plt.show()

        paradigms.append(paradigm)
        design_matrices.append(design_matrix)
        frametimes_list.append(frametimes)
        n_scans.append(_n_scans)

        # specify contrasts
        contrasts = {}
        n_columns = len(design_matrix.names)
        for i in xrange(paradigm.n_conditions):
            contrasts['%s' %
                      design_matrix.names[2 * i]] = np.eye(n_columns)[2 * i]

        # more interesting contrasts"""
        contrasts['Famous-Unfamiliar'] = contrasts['Famous'] - contrasts[
            'Unfamiliar']
        contrasts['Unfamiliar-Famous'] = -contrasts['Famous-Unfamiliar']
        contrasts[
            'Famous-Scrambled'] = contrasts['Famous'] - contrasts['Scrambled']
        contrasts['Scrambled-Famous'] = -contrasts['Famous-Scrambled']
        contrasts['Unfamiliar-Scrambled'] = contrasts[
            'Unfamiliar'] - contrasts['Scrambled']
        contrasts['Scrambled-Unfamiliar'] = -contrasts['Unfamiliar-Scrambled']

        list_of_contrast_dicts.append(contrasts)

    # importat maps
    z_maps = {}
    effects_maps = {}

    # fit GLM
    print('\r\nFitting a GLM (this takes time) ..')
    fmri_glm = FMRILinearModel(
        [nibabel.concat_images(sess_func) for sess_func in subject_data.func],
        [design_matrix.matrix for design_matrix in design_matrices],
        mask='compute')
    fmri_glm.fit(do_scaling=True, model='ar1')

    print "... done.\r\n"

    # save computed mask
    mask_path = os.path.join(subject_data.output_dir, "mask.nii.gz")

    print "Saving mask image to %s ..." % mask_path
    nibabel.save(fmri_glm.mask, mask_path)
    print "... done.\r\n"

    # replicate contrasts across runs
    contrasts = dict(
        (cid, [contrasts[cid] for contrasts in list_of_contrast_dicts])
        for cid, cval in contrasts.iteritems())

    # compute effects
    for contrast_id, contrast_val in contrasts.iteritems():
        print "\tcontrast id: %s" % contrast_id
        z_map, eff_map = fmri_glm.contrast(contrast_val,
                                           con_id=contrast_id,
                                           output_z=True,
                                           output_stat=False,
                                           output_effects=True,
                                           output_variance=False)

        # store stat maps to disk
        for map_type, out_map in zip(['z', 'effects'], [z_map, eff_map]):
            map_dir = os.path.join(subject_data.output_dir,
                                   '%s_maps' % map_type)
            if not os.path.exists(map_dir):
                os.makedirs(map_dir)
            map_path = os.path.join(map_dir, '%s.nii.gz' % contrast_id)
            print "\t\tWriting %s ..." % map_path
            nibabel.save(out_map, map_path)

            # collect zmaps for contrasts we're interested in
            if map_type == 'z':
                z_maps[contrast_id] = map_path

            if map_type == 'effects':
                effects_maps[contrast_id] = map_path

    # remove repeated contrasts
    contrasts = dict((cid, cval[0]) for cid, cval in contrasts.iteritems())

    # do stats report
    stats_report_filename = os.path.join(
        getattr(subject_data, 'reports_output_dir', subject_data.output_dir),
        "report_stats.html")
    generate_subject_stats_report(
        stats_report_filename,
        contrasts,
        z_maps,
        fmri_glm.mask,
        threshold=threshold,
        cluster_th=cluster_th,
        slicer=slicer,
        cut_coords=cut_coords,
        design_matrices=design_matrices,
        subject_id=subject_data.subject_id,
        start_time=stats_start_time,
        title="GLM for subject %s" % subject_data.subject_id,

        # additional ``kwargs`` for more informative report
        TR=tr,
        n_scans=n_scans,
        hfcut=hfcut,
        drift_model=drift_model,
        hrf_model=hrf_model,
        paradigm=dict(("Run_%02i" % (run_id + 1), paradigms[run_id])
                      for run_id in run_ids),
        frametimes=dict(("Run_%02i" % (run_id + 1), frametimes_list[run_id])
                        for run_id in run_ids),
        # fwhm=fwhm
    )

    ProgressReport().finish_dir(subject_data.output_dir)
    print "\r\nStatistic report written to %s\r\n" % stats_report_filename

    return contrasts, effects_maps, z_maps, mask_path
def run_suject_level1_glm(subject_data_dir, subject_output_dir, task_id,
                          readout_time=.01392,  # seconds
                          tr=.72,
                          do_preproc=False,
                          do_realign=False,
                          do_normalize=False,
                          fwhm=0.,
                          report=False,
                          hrf_model="Canonical with Derivative",
                          drift_model="Cosine",
                          hfcut=100,
                          regress_motion=True,
                          slicer='y',
                          cut_coords=6,
                          threshold=3.,
                          cluster_th=15
                          ):
    """
    Function to do preproc + analysis for a single HCP subject (task fMRI)

    """

    # sanitize subject data_dir
    subject_id = int(os.path.basename(subject_data_dir))
    subject_data_dir = os.path.abspath(subject_data_dir)
    _subject_data_dir = os.path.join(subject_data_dir,
                                     "MNINonLinear/Results/")

    add_regs_files = None

    if do_preproc:
        if not os.path.exists(subject_output_dir):
            os.makedirs(subject_output_dir)

        # glob fmri files
        fmri_files = [os.path.join(
                subject_data_dir,
                "unprocessed/3T/tfMRI_%s_%s/%s_3T_tfMRI_%s_%s.nii.gz" % (
                    task_id, direction, subject_id,
                    task_id, direction))
                          for direction in ["LR", "RL"]]
        assert len(fmri_files) == 2

        # glob anat file
        anat_file = os.path.join(subject_data_dir,
                                 "T1w/T1w_acpc_dc_restore_brain.nii.gz")
        # assert os.path.isfile(anat_file)
        if not os.path.isfile(anat_file):
            anat_file = None

        # distortion correction ?
        dc_output = _do_fmri_distortion_correction(
            fmri_files, subject_data_dir,
            subject_output_dir,
            subject_id, task_id,
            readout_time=readout_time,
            report=report
            )
        if dc_output is None:
            return
        else:
            fmri_files, realignment_parameters = dc_output

        # preprocess the data
        preproc_subject_data = do_subject_preproc(SubjectData(
                func=fmri_files, anat=anat_file,
                output_dir=subject_output_dir),
                                                  do_realign=True,
                                                  do_normalize=do_normalize,
                                                  fwhm=fwhm,
                                                  report=report
                                                  )
        fmri_files = preproc_subject_data.func
        n_motion_regressions = 6
        if do_realign and regress_motion:
            add_regs_files = realignment_parameters
    else:
        n_motion_regressions = 12

        # glob fmri files
        fmri_files = []
        for direction in ['LR', 'RL']:
            fmri_file = os.path.join(
                _subject_data_dir, "tfMRI_%s_%s/tfMRI_%s_%s.nii.gz" % (
                    task_id, direction, task_id, direction))
            if not os.path.isfile(fmri_file):
                print "Can't find task fMRI file %s; skipping subject %s" % (
                    fmri_file, subject_id)
                return
            else:
                fmri_files.append(fmri_file)

        # glob movement confounds
        if regress_motion:
            add_regs_files = [os.path.join(_subject_data_dir,
                                           "tfMRI_%s_%s" % (
                        task_id, direction),
                                           "Movement_Regressors.txt")
                              for direction in ["LR", "RL"]]

        # smooth images
        if np.sum(fwhm) > 0:
            print "Smoothing fMRI data (fwhm = %s)..." % fwhm
            fmri_files = _do_subject_smooth(SubjectData(
                    func=fmri_files, output_dir=subject_output_dir),
                                            fwhm=fwhm,
                                            report=False
                                            ).func
            print "... done.\r\n"

    # sanitize subject_output_dir
    if not os.path.exists(subject_output_dir):
        os.makedirs(subject_output_dir)

    # chronometry
    stats_start_time = pretty_time()

    # merged lists
    paradigms = []
    frametimes_list = []
    design_matrices = []
    # fmri_files = []
    n_scans = []
    for direction, direction_index in zip(['LR', 'RL'], xrange(2)):
        # glob the design file
        design_file = os.path.join(_subject_data_dir, "tfMRI_%s_%s" % (
                task_id, direction),
                                   "tfMRI_%s_%s_hp200_s4_level1.fsf" % (
                task_id, direction))
        if not os.path.isfile(design_file):
            print "Can't find design file %s; skipping subject %s" % (
                design_file, subject_id)
            return

        # read the experimental setup
        print "Reading experimental setup from %s ..." % design_file
        fsl_condition_ids, timing_files, fsl_contrast_ids, contrast_values = \
            read_design_fsl_design_file(design_file)
        print "... done.\r\n"

        # fix timing filenames
        timing_files = _insert_directory_in_file_name(
            timing_files, "tfMRI_%s_%s" % (task_id, direction), 1)

        # make design matrix
        print "Constructing design matrix for direction %s ..." % direction
        _n_scans = nibabel.load(fmri_files[direction_index]).shape[-1]
        n_scans.append(_n_scans)
        add_regs_file = add_regs_files[
            direction_index] if not add_regs_files is None else None,
        design_matrix, paradigm, frametimes = make_dmtx_from_timing_files(
            timing_files, fsl_condition_ids, n_scans=_n_scans, tr=tr,
            hrf_model=hrf_model, drift_model=drift_model, hfcut=hfcut,
            add_regs_file=add_regs_file,
            add_reg_names=[
                'Translation along x axis',
                'Translation along yaxis',
                'Translation along z axis',
                'Rotation along x axis',
                'Rotation along y axis',
                'Rotation along z axis',
                'Differential Translation along x axis',
                'Differential Translation along yaxis',
                'Differential Translation along z axis',
                'Differential Rotation along x axis',
                'Differential Rotation along y axis',
                'Differential Rotation along z axis'
                ][:n_motion_regressions] if not add_regs_files is None
            else None,
            )
        print "... done."

        paradigms.append(paradigm)
        frametimes_list.append(frametimes)
        design_matrices.append(design_matrix)

        # convert contrasts to dict
        contrasts = dict((contrast_id,
                          # append zeros to end of contrast to match design
                          np.hstack((contrast_value, np.zeros(len(
                                design_matrix.names) - len(contrast_value)))))

                         for contrast_id, contrast_value in zip(
                fsl_contrast_ids, contrast_values))

        # more interesting contrasts
        if task_id == 'MOTOR':
            contrasts['RH-LH'] = contrasts['RH'] - contrasts['LH']
            contrasts['LH-RH'] = -contrasts['RH-LH']
            contrasts['RF-LF'] = contrasts['RF'] - contrasts['LF']
            contrasts['LF-RF'] = -contrasts['RF-LF']
            contrasts['H'] = contrasts['RH'] + contrasts['LH']
            contrasts['F'] = contrasts['RF'] + contrasts['LF']
            contrasts['H-F'] = contrasts['RH'] + contrasts['LH'] - (
                contrasts['RF'] - contrasts['LF'])
            contrasts['F-H'] = -contrasts['H-F']

    # importat maps
    z_maps = {}
    effects_maps = {}

    # replicate contrasts across sessions
    contrasts = dict((cid, [cval] * 2)
                     for cid, cval in contrasts.iteritems())

    # compute effects
    mask_path = os.path.join(subject_output_dir, "mask.nii.gz")
    skip = os.path.isfile(mask_path)
    if skip:
        for contrast_id, contrast_val in contrasts.iteritems():
            for map_type in ['z', 'effects']:
                map_dir = os.path.join(
                    subject_output_dir, '%s_maps' % map_type)
                if not os.path.exists(map_dir):
                    os.makedirs(map_dir)
                map_path = os.path.join(
                    map_dir, '%s.nii.gz' % contrast_id)
                if not os.path.exists(map_path):
                    skip = 0
                    break

                # collect zmaps for contrasts we're interested in
                if map_type == 'z':
                    z_maps[contrast_id] = map_path

                if map_type == 'effects':
                    effects_maps[contrast_id] = map_path

            if skip:
                print "Skipping subject %s..." % (
                    subject_id)

    # fit GLM
    if not skip:
        print (
            'Fitting a "Fixed Effect" GLM for merging LR and RL phase-encoding '
            'directions for subject %s ...' % subject_id)
        fmri_glm = FMRILinearModel(fmri_files,
                                   [design_matrix.matrix
                                    for design_matrix in design_matrices],
                                   mask='compute'
                                   )
        fmri_glm.fit(do_scaling=True, model='ar1')
        print "... done.\r\n"

        # save computed mask
        mask_path = os.path.join(subject_output_dir, "mask.nii.gz")
        print "Saving mask image to %s ..." % mask_path
        nibabel.save(fmri_glm.mask, mask_path)
        print "... done.\r\n"

        # compute effects
        for contrast_id, contrast_val in contrasts.iteritems():
            print "\tcontrast id: %s" % contrast_id
            z_map, eff_map = fmri_glm.contrast(
                contrast_val,
                con_id=contrast_id,
                output_z=True,
                output_effects=True
                )

            # store stat maps to disk
            for map_type, out_map in zip(['z', 'effects'],
                                         [z_map, eff_map]):
                map_dir = os.path.join(
                    subject_output_dir, '%s_maps' % map_type)
                if not os.path.exists(map_dir):
                    os.makedirs(map_dir)
                map_path = os.path.join(
                    map_dir, '%s.nii.gz' % contrast_id)
                print "\t\tWriting %s ..." % map_path
                nibabel.save(out_map, map_path)

                # collect zmaps for contrasts we're interested in
                if map_type == 'z':
                    z_maps[contrast_id] = map_path

                if map_type == 'effects':
                    effects_maps[contrast_id] = map_path

    # remove repeated contrasts
    contrasts = dict((cid, cval[0]) for cid, cval in contrasts.iteritems())

    # do stats report
    if 0x0:
        anat_img = load_specific_vol(fmri_files[0], 0)[0]
        stats_report_filename = os.path.join(subject_output_dir,
                                             "reports",
                                             "report_stats.html")
        generate_subject_stats_report(
            stats_report_filename,
            contrasts,
            z_maps,
            nibabel.load(mask_path),
            anat=anat_img.get_data(),
            anat_affine=anat_img.get_affine(),
            threshold=threshold,
            cluster_th=cluster_th,
            slicer=slicer,
            cut_coords=cut_coords,
            design_matrices=design_matrices,
            subject_id=subject_id,
            start_time=stats_start_time,
            title="GLM for subject %s" % subject_id,

            # additional ``kwargs`` for more informative report
            TR=tr,
            n_scans=n_scans,
            hfcut=hfcut,
            drift_model=drift_model,
            hrf_model=hrf_model,
            paradigm={'LR': paradigms[0].__dict__,
                      'RL': paradigms[1].__dict__},
            frametimes={'LR': frametimes_list[0], 'RL': frametimes_list[1]},
            fwhm=fwhm
            )

        ProgressReport().finish_dir(subject_output_dir)
        print "\r\nStatistic report written to %s\r\n" % stats_report_filename

    return contrasts, effects_maps, z_maps, mask_path