Exemple #1
0
def prime_powers(n):
    ''' Return dict where keys are primes and values are exponents. Represents
    prime factorization of 'n!' '''
    powers = dict()
    for p in primes(n):
        powers[p] = legendre(p, n)
    return powers
Exemple #2
0
def longest_recurring(n):
    for d in primes(n)[::-1]:
        p = 1
        while pow(10, p, d) != 1:
            p += 1
        if d - 1 == p:
            return d
Exemple #3
0
def main():
    ''' Driver function '''
    n, m = 20 * 10**6, 15 * 10**6
    total = 0
    for p in primes(n):
        total += p * (legendre(n, p) - legendre(m, p) - legendre(n - m, p))
    print(total)
Exemple #4
0
def getSolution(limit):
    result = 1
    for prime in pyprimesieve.primes(limit):
        power = 1
        while prime ** (power + 1) <= limit:
            power += 1
        result *= prime ** power
    return result
Exemple #5
0
def main():
    ''' Driver function '''
    end = 40000000
    chain_lengths = [0] * end
    total = 0
    for p in primes(end):
        if prime_chain_length(p, chain_lengths) == 25:
            total += p
    print(total)
Exemple #6
0
def path_to_roots(bitmask):
    ''' Generator of lists containing the values between 'p' and its digital
    root. Values are represented using 'bitmask' '''
    for p in primes(10**7, 2 * 10**7):
        cur = []
        while p > 9:
            digits = [int(n) for n in str(p)]
            cur += [[bitmask[d] for d in digits]]
            p = sum(digits)
        yield cur + [[bitmask[p]]]
Exemple #7
0
def main():
    ''' R(k) is equal to (10**k-1)/9. Thus, a number n divides R(k) IFF
    (10**k-1)/9 = 0 (mod n). This can be re-arranged to 10**k = 1 (mod 9*n),
    which allows for the use of modular exponentiation '''
    factors = []
    for n in primes(10**6):
        if pow(10, 10**9, 9*n) == 1:
            factors += [n]
        if len(factors) == 40:
            break
    print(sum(factors))
Exemple #8
0
def maximise_quad():
    max_seq = A = B = 0
    quad = lambda n, a, b: n * n + a * n + b
    cache = set(pp.primes(100000))
    for a in range(-999, 1000, 1):
        for b in range(-1000, 1001, 1):
            n = 0
            while (x := quad(n, a, b)) in cache:
                n += 1
            if n > max_seq:
                A, B, max_seq = a, b, n
Exemple #9
0
def get_vals(end):
    ''' This post explains it: https://bit.ly/2J9ByKf '''
    vals = primes(end)
    n = 0
    while vals[n] < end**0.5:
        val, l = 0, 1
        while val < end:
            val = vals[n]**2**l
            vals.append(val)
            l += 1
        n += 1
    return sorted(vals)
Exemple #10
0
def find_num_divisors(end):
    ''' Calculate the number of divisors for each number up to 'end' '''
    num_divisors = [0 for _ in range(2, end)]
    prime = set(primes(10**7))
    for n in range(2, end):
        divisors = 1
        if n not in prime:
            factors = factorize(n)
            for _, e in factors:
                divisors *= (e + 1)
        num_divisors[n - 2] = divisors
    return num_divisors
Exemple #11
0
def main():
    ''' The solution must be > 1000000 as A(n) < n. This function iterates over
    valid values of 'n' (not prime and not divisible by 2 or 5) starting at 2
    until 25 solutions are found. The sum of these solutions is then printed '''
    found = []
    prime = set(primes(100000))
    for n in count(2):
        if n not in prime and n % 2 and n % 5 and (n -
                                                   1) % brute_check(n) == 0:
            found += [n]
            if len(found) == 25:
                break
    print(sum(found))
Exemple #12
0
def main():
    ''' 'n' must be a cube. This function iterates over all cubes up to 600^3
    for each prime. 'found' keeps track of the number of valid '(n, p)' pairs.
    This amount is printed at the end. This solution is relatively slow (about
    30 seconds) '''
    found = 0
    cubes = [n**3 for n in range(1, 600)]
    for p in primes(1000000):
        for n in cubes:
            cur = n * n * (n + p)
            if round(cur**(1 / 3))**3 == cur:
                found += 1
                break
    print(found)
Exemple #13
0
def S(n):
    ''' Uses Goldbach's conjecture, which has been verified for integers in the
    range required by the problem. The sum of all P(m, 1) for 1 <= m <= n is
    the number of primes <= n. The sum of all P(m, 2) is the number of even
    integers in 4 <= m <= n plus the number of integers in 6 <= m <= n equal to
    a prime plus 2. The sum of all P(m, k) with k >= 3 is the sum of all
    integers in 6 <= m <= n floor divided by 2 minus 2 (subtract 2 for each m
    or subtract 2*(n-6) once). 'P_n_k' is a closed form expression that
    calculates this '''
    prime = primes(n + 1)
    P_n_1 = len(prime)
    P_n_2 = 0 if n < 4 else (n // 2) - 1 + (prime[-1] + 2 <= n) + P_n_1 - 2
    P_n_k = 0 if n < 6 else (ceil((7 - n) / 2)**2 - 7 * ceil(
        (7 - n) / 2) + (n // 2)**2 + (n // 2) - 4 * n + 20) // 2
    return P_n_1 + P_n_2 + P_n_k
Exemple #14
0
def general_hamming(end, high):
    ''' Return a set of all numbers (<= end) with prime factors not exceeding
    high '''
    hamming = {1}
    prev = {1}
    base = primes(high+1)
    while 2*min(prev) <= end:
        cur = set()
        for n in prev:
            for p in base:
                temp = n*p
                if temp > end:
                    break
                cur.add(temp)
        hamming.update(cur)
        prev = cur
    return hamming
Exemple #15
0
def find_goldbach():
    primes = pp.primes(N)
    cache = set(primes)
    sq2 = [2 * (n * n) for n in range(1, N)]
    i = 9
    while (i < N):
        if not i in cache:
            lt = lambda x: x < i
            result = False
            for a in takewhile(lt, sq2):
                for b in takewhile(lt, primes):
                    if a + b == i:
                        result = True
                        break
                if result:
                    break
            if not result:
                return i
        i += 2
Exemple #16
0
 def test_1(self):
     self.assertEqual(pyprimesieve.primes(1), [])
Exemple #17
0
def pyprimesieve(n):
    import pyprimesieve
    return list(pyprimesieve.primes(n))
def sumofprimes(n):  # lambda expression is slower
    return sum(primes(n))
Exemple #19
0
#! /usr/bin/env python3
# -*- coding: utf-8 -*-
# projecteuler.net
#
# problem 41
#

import pyprimesieve

primes = pyprimesieve.primes(7654321)

def pandigital(n):
    s = str(n)
    if ''.join(sorted(s)) == "1234567":
        return True
    return False

for p in reversed(primes):
    if pandigital(p):
        print(p)
        exit(0)
Exemple #20
0
 def test_emptylist_2(self):
     self.assertEqual(pyprimesieve.primes(-1), [])
Exemple #21
0
 def test_prime_count_2(self):
     self.assertEqual(len(pyprimesieve.primes(10**8)), 5761455)
Exemple #22
0
 def test_prime_count_1(self):
     self.assertEqual(len(pyprimesieve.primes(10**7)), 664579)
Exemple #23
0
 def test_prime_count_2(self):
     self.assertEqual(len(pyprimesieve.primes(10**8)), 5761455)
Exemple #24
0
 def test_4(self):
     self.assertEqual(pyprimesieve.primes(4), [2, 3])
Exemple #25
0
 def test_3(self):
     self.assertEqual(pyprimesieve.primes(3), [2])
Exemple #26
0
 def test_2(self):
     self.assertEqual(pyprimesieve.primes(2), [])
Exemple #27
0
 def test_2(self):
     self.assertEqual(pyprimesieve.primes(2), [])
Exemple #28
0
 def test_ranges_1(self):
     # start > n
     self.assertEqual(pyprimesieve.primes(411, 42), [])
Exemple #29
0
 def test_4(self):
     self.assertEqual(pyprimesieve.primes(4), [2, 3])
Exemple #30
0
 def test_ranges_2(self):
     # start < 0 - should be uneffected as if it were 2
     self.assertTrue(sequences_equal(pyprimesieve.primes(-100, 42), primes(42)))
 def test_bignums_2(self):
     self.assertEqual(pyprimesieve.primes_sum(10**6), sum(pyprimesieve.primes(10**6)))
Exemple #32
0
 def test_ranges_3(self):
     # arbitrary point to start
     self.assertTrue(sequences_equal(pyprimesieve.primes(1412, 85747),
                                     dropwhile(lambda n: n < 1412, primes(85747))))
Exemple #33
0
def sumofprimes(n):  # lambda expression is slower
    return sum(primes(n))
Exemple #34
0
 def test_ranges_4(self):
     # arbitrary point to start
     self.assertTrue(sequences_equal(pyprimesieve.primes(74651, 975145),
                                     dropwhile(lambda n: n < 74651, primes(975145))))
    result = 0
    for num in droots:
        result += 2*aroot(num)
    return result

def maxclock(n):
    n_copy = str(n)
    droots = [n_copy]
    while int(n_copy) >= 10:
        n_copy = droot(n_copy)
        droots.append(n_copy)
    result = aroot(droots[0])
    for i, num in enumerate(droots[1:]):
        prev = droots[i]
        cur = num
        diff = len(prev) - len(cur)
        result += aroot(prev[:diff])
        for i, dig in enumerate(cur):
            result += chdict[(prev[diff+i], dig)]
    result += aroot(droots[-1])
    return result

import pyprimesieve as pp
result = 0
for p in pp.primes(2*10**7):
    if p>10**7:
        s = samclock(p)
        m = maxclock(p)
        result += (s-m)
print result
from math import log
import pyprimesieve as pp

import sys
sys.setrecursionlimit(5000)


def max_primepow(n, prime):
    if n < prime:
        return 0
    return int(log(n)/log(prime))


myprimes = set(pp.primes(10))
def gen_admissible(n, prodprimes=1, lastprime=1, admiss=[1]):
    nextprime = None
    for num in xrange(lastprime+1, 6):
        if num in {2, 3, 5}:
            nextprime = num
            prodprimes = prodprimes * nextprime
            break
    if not nextprime:
        return admiss
    else:
        newadmiss = []
        for base in sorted(admiss):
            max_pow = max_primepow(n/base, nextprime)
            if not max_pow:
                break
            newadmiss += [base*nextprime**i for i in xrange(1, max_pow+1)]
import pyprimesieve as pp
import sys

from itertools import product
from operator import mul

sys.setrecursionlimit(2000)
gazinga_cache = {1: 1}
prime = pp.primes(45)


def isvalid(combo, nmax=10**9):
    num = 1
    for i, n in enumerate(combo):
        num = num * prime[i]**n
    return num < nmax, num


def firstidx(combo):
    idx = 0
    for i in xrange(len(combo)-1, 0, -1):
        if combo[i] < combo[i-1]:
            idx = i
            break
    combo[idx] += 1
    newcombo = combo[:idx+1] + [1]*len(combo[idx+1:])
    return idx, newcombo


def secondidx(combo, nmax=10**9):
Exemple #38
0
def prime_sieve(n):
    """
    Finds all primes from 1 until n
    """
    import pyprimesieve
    return pyprimesieve.primes(int(n))
Exemple #39
0
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# projecteuler.net
#
# problem 27
#

from pyprimesieve import primes

s = 0
c = (0, 0)
p = set(primes(751000))

for a in range(-999, 0, 2):
    for b in range(-a, 1000, 2):
        n = 1
        while (n * (n + a) + b) in p:
            n += 1
        if n > s:
            s = n
            c = (a, b)

print(c[0] * c[1])
Exemple #40
0
            sequences_equal(pyprimesieve.primes(-100, 42), primes(42)))

    def test_ranges_3(self):
        # arbitrary point to start
        self.assertTrue(
            sequences_equal(
                pyprimesieve.primes(1412, 85747),
                itertools.dropwhile(lambda n: n < 1412, primes(85747))))

    def test_ranges_4(self):
        # arbitrary point to start
        self.assertTrue(
            sequences_equal(
                pyprimesieve.primes(74651, 975145),
                itertools.dropwhile(lambda n: n < 74651, primes(975145))))


def sequences_equal(lst1, lst2):
    return all(a == b for a, b in zip_longest(lst1, lst2))


for i, n in enumerate(
        xrange(100, 10000, 100)
):  # create sequence comparison tests for sieves of size n in range
    test = lambda self: self.assertTrue(
        sequences_equal(pyprimesieve.primes(n), primes(n)))
    setattr(TestPrimes, 'test_' + str(i), test)

if __name__ == "__main__":
    unittest.main()
Exemple #41
0
 def test_ranges_1(self):
     # start > n
     self.assertEqual(pyprimesieve.primes(411, 42), [])
Exemple #42
0
        # start > n
        self.assertEqual(pyprimesieve.primes(411, 42), [])

    def test_ranges_2(self):
        # start < 0 - should be uneffected as if it were 2
        self.assertTrue(sequences_equal(pyprimesieve.primes(-100, 42), primes(42)))

    def test_ranges_3(self):
        # arbitrary point to start
        self.assertTrue(sequences_equal(pyprimesieve.primes(1412, 85747),
                                        dropwhile(lambda n: n < 1412, primes(85747))))

    def test_ranges_4(self):
        # arbitrary point to start
        self.assertTrue(sequences_equal(pyprimesieve.primes(74651, 975145),
                                        dropwhile(lambda n: n < 74651, primes(975145))))


def sequences_equal(lst1, lst2):
    return all(a == b for a, b in izip_longest(lst1, lst2))

primes = _primes_numpy if HAS_NUMPY else _primes

for i, n in enumerate(xrange(100, 10000, 100)):  # create sequence comparison tests for sieves of size n in range
    test = lambda self: self.assertTrue(sequences_equal(pyprimesieve.primes(n), primes(n)))
    setattr(TestPrimes, 'test_' + str(i), test)


if __name__ == "__main__":
    unittest.main()
from math import sqrt, log
import pyprimesieve as pp

import sys
sys.setrecursionlimit(5000)


def max_primepow(n, prime):
    if n < prime:
        return 0
    return int(log(n)/log(prime))


myprimes = set(pp.primes(10**9))
def gen_admissible(n, prodprimes=1, lastprime=1, admiss=[1], valids=[1]):
    nextprime = None
    for num in xrange(lastprime+1, int(sqrt(n))+1):
        if num in myprimes:
            nextprime = num
            prodprimes = prodprimes * nextprime
            break
    if not nextprime:
        return admiss
    else:
        newadmiss = []
        for base in sorted(valids):
            max_pow = max_primepow(n/base, nextprime)
            if not max_pow:
                break
            newadmiss += [base*nextprime**i for i in xrange(1, max_pow+1)]
Exemple #44
0
 def test_ranges_3(self):
     # arbitrary point to start
     self.assertTrue(
         sequences_equal(
             pyprimesieve.primes(1412, 85747),
             itertools.dropwhile(lambda n: n < 1412, primes(85747))))
Exemple #45
0
 def test_1(self):
     self.assertEqual(pyprimesieve.primes(1), [])
 def test_ranges_2(self):
     s = pyprimesieve.primes_sum(7, 22)
     self.assertEqual(s, 67)
     self.assertEqual(s, sum(pyprimesieve.primes(22)[3:]))
Exemple #47
0
 def test_3(self):
     self.assertEqual(pyprimesieve.primes(3), [2])
 def test_ranges_1(self):
     s = pyprimesieve.primes_sum(3, 13)
     self.assertEqual(s, 26)
     self.assertEqual(s, sum(pyprimesieve.primes(13)[1:]))
Exemple #49
0
 def test_prime_count_1(self):
     self.assertEqual(len(pyprimesieve.primes(10**7)), 664579)
Exemple #50
0
import pyprimesieve as pp
from benchmark import timed

max_prime = 1000000
primes = pp.primes(max_prime)
max_idx = len(primes) - 1
cache = set(primes)

# optimize:
# work from max slice down (and return first result), not min slice up


@timed
def find_longest_slice(min_slice):
    result = 0
    longest_slice = min_slice
    for idx in range(0, max_idx - min_slice):
        slice = min_slice
        while (subset := sum(primes[idx:idx + slice])) <= max_prime:
            if subset in cache:
                if slice > longest_slice:
                    longest_slice = slice
                    result = subset
            slice += 1
    return (result, longest_slice, idx)


result = find_longest_slice(21)
print(result)
Exemple #51
0
 def test_emptylist_2(self):
     self.assertEqual(pyprimesieve.primes(-1), [])
import pyprimesieve as pp
primes = set(pp.primes(500))

from collections import defaultdict
from fractions import Fraction as F


def shoutprob(yelp, k):
    res = F(1, 3) * (F(1) + F(k in primes))
    if yelp == 'P':
        return res
    else:
        return F(1) - res


def getjumps(k, n=500):
    if k == 1:
        return {k+1: F(1)}
    elif k == n:
        return {k-1: F(1)}
    else:
        return {k-1: F(1, 2), k+1: F(1, 2)}


def movefrog(yelp, possib):
    newpossib = defaultdict(F)
    for k, prob in possib.iteritems():
        for j, jprob in getjumps(k).iteritems():
            newpossib[j] += prob*shoutprob(yelp, k)*jprob
    return newpossib
Exemple #53
0
 def test_ranges_2(self):
     # start < 0 - should be uneffected as if it were 2
     self.assertTrue(
         sequences_equal(pyprimesieve.primes(-100, 42), primes(42)))
Exemple #54
0
import pyprimesieve
# Library from here: https://pypi.python.org/pypi/pyprimesieve

first_number = "1"+"0"*30+"1"
last_number =  "1"+"1"*30+"1"
first_thousand_primes = pyprimesieve.primes(5000)

def is_prime_in_base(num_str, base):
    n = int(num_str, base=base)
    for i in first_thousand_primes:
        if n %i ==0: return i
    return -1

print "Case #1:"
J = 0
current_number = first_number
while J!=500:
    factors = []
    correct = True
    for base in xrange(2,10+1): # for each base
        factor = is_prime_in_base(current_number, base)
        if factor != -1:
            factors.append(factor)
        else:
            correct = False
            break
    if correct:
        print current_number,
        for factor in factors: print factor,
        print ""
        J+=1
Exemple #55
0
 def test_ranges_4(self):
     # arbitrary point to start
     self.assertTrue(
         sequences_equal(
             pyprimesieve.primes(74651, 975145),
             itertools.dropwhile(lambda n: n < 74651, primes(975145))))
import pyprimesieve as pp
from collections import defaultdict

primelst = pp.primes(10**7)
myprimes = set(primelst)
def isprime(n):
    return n in myprimes


def changedigit(n):
    str_n = str(n)
    edges = defaultdict(set)
    for i, dig in enumerate(str_n):
        alldigs = [str(x) for x in range(10) if str(x) != dig]
        if i == 0:
            alldigs.pop(0)
        for newdig in alldigs:
            testprime = str_n[:i] + newdig + str_n[i+1:]
            testprime = int(testprime)
            if isprime(testprime):
                edges[testprime].add(n)
    return edges


def adddigit(n):
    str_n = str(n)
    edges = defaultdict(set)
    alldigs = [str(x) for x in range(1, 10)]
    for newdig in alldigs:
        testprime = newdig + str_n