Exemple #1
0
#Initialize pyprof
pyprof.init()


class Foo(torch.autograd.Function):
    @staticmethod
    def forward(ctx, in1, in2):
        out = in1 + in2  #This could be a custom C/C++ function.
        return out

    @staticmethod
    def backward(ctx, grad):
        in1_grad = grad  #This could be a custom C/C++ function.
        in2_grad = grad  #This could be a custom C/C++ function.
        return in1_grad, in2_grad


#Hook the forward and backward functions to pyprof
pyprof.wrap(Foo, 'forward')
pyprof.wrap(Foo, 'backward')

foo = Foo.apply

x = torch.ones(4, 4).cuda()
y = torch.ones(4, 4).cuda()

with torch.autograd.profiler.emit_nvtx():
    profiler.start()
    z = foo(x, y)
    profiler.stop()
Exemple #2
0
    def __init__(self, size):
        super(Foo, self).__init__()
        self.n = torch.nn.Parameter(torch.ones(size))
        self.m = torch.nn.Parameter(torch.ones(size))

    def forward(self, input):
        return self.n * input + self.m


foo = Foo(4)
foo.cuda()
x = torch.ones(4).cuda()

#JIT the class using tracing
traced_foo = torch.jit.trace(foo, x)

#Initialize pyprof after the JIT step
pyprof.init()

#Assign a name to the object "traced_foo"
traced_foo.__dict__['__name__'] = "foo"

#Hook up the forward function to pyprof
pyprof.wrap(traced_foo, 'forward')

with torch.autograd.profiler.emit_nvtx():
    profiler.start()
    z = traced_foo(x)
    profiler.stop()
    print(z)
Exemple #3
0
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import fused_layer_norm_cuda
from apex.normalization import FusedLayerNorm
import pyprof

pyprof.init()
pyprof.wrap(fused_layer_norm_cuda, 'forward')
pyprof.wrap(fused_layer_norm_cuda, 'backward')
pyprof.wrap(fused_layer_norm_cuda, 'forward_affine')
pyprof.wrap(fused_layer_norm_cuda, 'backward_affine')

input = torch.randn(20, 5, 10, 10).cuda()

# With Learnable Parameters
m = FusedLayerNorm(input.size()[1:]).cuda()
output = m(input)

# Without Learnable Parameters
m = FusedLayerNorm(input.size()[1:], elementwise_affine=False).cuda()
output = m(input)

# Normalize over last two dimensions
Exemple #4
0
import torch
from apex.optimizers import FusedAdam
import amp_C
import pyprof

pyprof.init()
# Wrap the custom fused multi tensor Adam implementation
pyprof.wrap(amp_C, 'multi_tensor_adam')

inp = 1024
hid = 2048
out = 4096
batch = 128

# Model
model = torch.nn.Sequential(
    torch.nn.Linear(inp, hid).cuda().half(), torch.nn.ReLU(),
    torch.nn.Linear(hid, out).cuda().half())
# Loss
criterion = torch.nn.CrossEntropyLoss().cuda()
# Adam optimizer
optimizer = FusedAdam(model.parameters())
# Input
x = torch.ones(batch, inp).cuda().half()
# Target
target = torch.empty(batch, dtype=torch.long).random_(out).cuda()

with torch.autograd.profiler.emit_nvtx():
    y = model(x)
    loss = criterion(y, target)
    optimizer.zero_grad()
import torch
import torch.cuda.profiler as profiler
import pyprof

#The following creates an object "foo" of type ScriptModule
#The new object has a function called "forward"


@torch.jit.script
def foo(x, y):
    return torch.sigmoid(x) + y


#Initialize pyprof after the JIT step
pyprof.init()

#Assign a name to the object "foo"
foo.__name__ = "foo"

#Hook up the forward function to pyprof
pyprof.wrap(foo, 'forward')

x = torch.zeros(4, 4).cuda()
y = torch.ones(4, 4).cuda()

with torch.autograd.profiler.emit_nvtx():
    profiler.start()
    z = foo(x, y)
    profiler.stop()
    print(z)
Exemple #6
0
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import fused_adam_cuda
from apex.optimizers import FusedAdam, FP16_Optimizer
import pyprof

pyprof.init()
pyprof.wrap(fused_adam_cuda, 'adam')

model = torch.nn.Linear(10, 20).cuda().half()
criterion = torch.nn.CrossEntropyLoss().cuda()
optimizer = FusedAdam(model.parameters())
optimizer = FP16_Optimizer(optimizer)

x = torch.ones(32, 10).cuda().half()
target = torch.empty(32, dtype=torch.long).random_(20).cuda()
y = model(x)
loss = criterion(y, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()