def solve_network(n, config, solver_log=None, opts='', **kwargs): solver_options = config['solving']['solver'].copy() solver_name = solver_options.pop('name') cf_solving = config['solving']['options'] track_iterations = cf_solving.get('track_iterations', False) min_iterations = cf_solving.get('min_iterations', 4) max_iterations = cf_solving.get('max_iterations', 6) # add to network for extra_functionality n.config = config n.opts = opts if cf_solving.get('skip_iterations', False): network_lopf(n, solver_name=solver_name, solver_options=solver_options, extra_functionality=None, **kwargs) else: ilopf(n, solver_name=solver_name, solver_options=solver_options, track_iterations=track_iterations, min_iterations=min_iterations, max_iterations=max_iterations, extra_functionality=None, **kwargs) return n
def solve_network(n, config, solver_log=None, opts="", extra_functionality=None, **kwargs): solver_options = config["solving"]["solver"].copy() solver_name = solver_options.pop("name") track_iterations = config["solving"]["options"].get( "track_iterations", False) min_iterations = config["solving"]["options"].get("min_iterations", 4) max_iterations = config["solving"]["options"].get("max_iterations", 6) # add to network for extra_functionality n.config = config n.opts = opts if config["solving"]["options"].get("skip_iterations", False): network_lopf(n, solver_name=solver_name, solver_options=solver_options, extra_functionality=extra_functionality, **kwargs) else: ilopf(n, solver_name=solver_name, solver_options=solver_options, track_iterations=track_iterations, min_iterations=min_iterations, max_iterations=max_iterations, extra_functionality=extra_functionality, **kwargs) return n