Exemple #1
0
    def test_sample_inputs(self):
        """This checks the shape and type of the returned multidimensional array."""
        n = 8
        N = 2**n
        all_arr = sample_inputs(n, N)
        self.check_multi_dimensional_array(all_arr, N, n, BIT_TYPE)

        N = 2**int(n / 2)
        rand_arr = sample_inputs(n, N)
        self.check_multi_dimensional_array(rand_arr, N, n, BIT_TYPE)
    def test_uniqueness_set(self):
        """This method tests the uniqueness set generation function."""
        n = 8
        k = 1
        N = 2**n
        instance_count = 25
        measurements = 2
        transformation = LTFArray.transform_id
        combiner = LTFArray.combiner_xor
        instances = [
            LTFArray(weight_array=LTFArray.normal_weights(
                n=n, k=k, random_instance=RandomState(0xA1A1 + i)),
                     transform=transformation,
                     combiner=combiner) for i in range(instance_count)
        ]
        challenges = sample_inputs(n, N, random_instance=RandomState(0xFAB10))

        uniqueness_set = PropertyTest.uniqueness_set(instances,
                                                     challenges,
                                                     measurements=measurements)

        # Check uniqueness_set to have the expected number of elements
        self.assertEqual(len(uniqueness_set), N * measurements)
        # For normal distributed weights is the expected uniqueness near 0.5
        self.assertEqual(round(mean(uniqueness_set), 1), 0.5)
    def test_reliability(self):
        """This method tests the test_reliability calculation."""
        n = 8
        k = 8
        N = 2**n
        transformation = LTFArray.transform_id
        combiner = LTFArray.combiner_xor
        instance = LTFArray(
            weight_array=LTFArray.normal_weights(
                n=n, k=k, random_instance=RandomState(0xA1A1)),
            transform=transformation,
            combiner=combiner,
        )
        challenges = sample_inputs(n, N, random_instance=RandomState(0xFAB1A))
        reliabilities = []
        for challenge in challenges:
            reliabilities.append(
                PropertyTest.reliability(instance, reshape(challenge, (1, n))))

        # For noiseless simulations the responses are always the same hence the reliability is 0%
        assert_array_equal(reliabilities, repeat(0.0, N))

        noisy_instance = NoisyLTFArray(
            weight_array=NoisyLTFArray.normal_weights(
                n=n, k=k, random_instance=RandomState(0xA1A1)),
            transform=transformation,
            combiner=combiner,
            sigma_noise=15.0,
            random_instance=RandomState(0x5015E),
        )
        for challenge in challenges:
            reliability = PropertyTest.reliability(noisy_instance,
                                                   reshape(challenge, (1, n)))
            # For noisy simulations the responses should vary
            self.assertNotEqual(reliability, 0.0)
Exemple #4
0
 def prepare(self):
     self.set = sample_inputs(self.parameters.n, self.parameters.N,
                              RandomState(seed=self.parameters.seed_input))
     self.ltf_array = LTFArray(
         weight_array=LTFArray.normal_weights(self.parameters.n,
                                              self.parameters.k),
         transform=self.parameters.transform,
         combiner=self.parameters.combiner,
     )
Exemple #5
0
 def run(self):
     """Runs a property test."""
     ins_gen_function = getattr(self, self.parameters.ins_gen_function)
     instances = ins_gen_function(**self.parameters.param_ins_gen)
     n = self.parameters.param_ins_gen['n']
     challenge_prng = RandomState(self.parameters.challenge_seed)
     challenges = array(list(sample_inputs(n, self.parameters.challenge_count, random_instance=challenge_prng)))
     property_test = PropertyTest(instances, logger=self.progress_logger)
     test_function = getattr(PropertyTest, self.parameters.test_function)
     self.result = test_function(property_test, challenges, measurements=self.parameters.measurements)
    def test_reliability_statistic(self):
        """This method tests the reliability statistic of an instance set."""
        n = 8
        k = 1
        N = 2**n
        instance_count = 2
        measurements = 100
        transformation = LTFArray.transform_id
        combiner = LTFArray.combiner_xor

        instances = [
            LTFArray(weight_array=LTFArray.normal_weights(
                n=n, k=k, random_instance=RandomState(0xA1A1 + i)),
                     transform=transformation,
                     combiner=combiner) for i in range(instance_count)
        ]

        challenges = sample_inputs(n, N, random_instance=RandomState(0xFAB10))

        property_test = PropertyTest(instances)
        reliability_statistic = property_test.reliability_statistic(
            challenges, measurements=measurements)
        # For an noiseless set of simulations the reliability must be 0%
        for key, value in reliability_statistic.items():
            if key == 'sv':
                self.assertEqual(value, 0.0, '{}'.format(key))
            elif key == 'samples':
                self.assertEqual(len(value), instance_count * N,
                                 '{}'.format(key))
            else:
                self.assertEqual(value, 0.0, '{}'.format(key))

        noisy_instances = [
            NoisyLTFArray(
                weight_array=LTFArray.normal_weights(
                    n=n, k=k, random_instance=RandomState(0xA1A1 + i)),
                transform=transformation,
                combiner=combiner,
                sigma_noise=0.5,
                random_instance=RandomState(0xCABE),
            ) for i in range(instance_count)
        ]

        noisy_property_test = PropertyTest(noisy_instances)
        noisy_reliability_statistic = noisy_property_test.reliability_statistic(
            challenges, measurements=measurements)
        self.assertNotEqual(noisy_reliability_statistic['mean'], 0.0)
    def test_reliability_set(self):
        """This method tests the reliability_statistic calculation."""
        n = 8
        k = 3
        N = 2**n
        measurements = 10
        transformation = LTFArray.transform_id
        combiner = LTFArray.combiner_xor
        instances = []
        instance_count = 3
        for i in range(instance_count):
            instance = LTFArray(
                weight_array=LTFArray.normal_weights(
                    n=n, k=k, random_instance=RandomState(0xA1A1 + i)),
                transform=transformation,
                combiner=combiner,
            )
            instances.append(instance)

        challenges = sample_inputs(n, N, random_instance=RandomState(0xFAB0))

        reliability_set = PropertyTest.reliability_set(
            instances, challenges, measurements=measurements)
        # The result is an array like with N * k entries.
        self.assertEqual(len(reliability_set), N * instance_count)
        # For noiseless simulations the all reliabilities must be 0%
        assert_array_equal(reliability_set, repeat(0.0, N * instance_count))

        noisy_instances = []
        for i in range(instance_count):
            noisy_instance = NoisyLTFArray(
                weight_array=NoisyLTFArray.normal_weights(
                    n=n, k=k, random_instance=RandomState(0xA1A1 + i)),
                transform=transformation,
                combiner=combiner,
                sigma_noise=0.5,
                random_instance=RandomState(0x5015C + i),
            )
            noisy_instances.append(noisy_instance)

        noisy_reliability_set = PropertyTest.reliability_set(
            noisy_instances, challenges, measurements=measurements)
        # For a noisy simulation the mean reliability must differ from zero
        self.assertNotEqual(mean(noisy_reliability_set), 0.0)
 def test_uniqueness(self):
     """
     This method tests the function which can be used to calculate the uniqueness of a set of simulation instances.
     """
     n = 8
     k = 1
     N = 2**n
     instance_count = 50
     transformation = LTFArray.transform_id
     combiner = LTFArray.combiner_xor
     instances = [
         LTFArray(weight_array=LTFArray.normal_weights(
             n=n, k=k, random_instance=RandomState(0xA1A1 + i)),
                  transform=transformation,
                  combiner=combiner) for i in range(instance_count)
     ]
     challenges = sample_inputs(n, N, random_instance=RandomState(0xFAB10))
     uniqueness = []
     for challenge in challenges:
         uniqueness.append(
             PropertyTest.uniqueness(instances, reshape(challenge, (1, n))))
     # For normal distributed weights is the expected uniqueness near 0.5
     self.assertEqual(round(mean(uniqueness), 1), 0.5)
Exemple #9
0
def example_reliability_statistic():
    """This method shows hot to use the PropertyTest.reliability_statistic."""
    n = 8
    k = 1
    N = 2**n
    instance_count = 3
    measurements = 100
    transformation = NoisyLTFArray.transform_id
    combiner = NoisyLTFArray.combiner_xor
    weights = NoisyLTFArray.normal_weights(n=n, k=k)
    instances = [
        NoisyLTFArray(
            weight_array=weights,
            transform=transformation,
            combiner=combiner,
            sigma_noise=NoisyLTFArray.sigma_noise_from_random_weights(n, 0.5))
        for _ in range(instance_count)
    ]
    challenges = array(list(sample_inputs(n, N)))
    property_test = PropertyTest(instances)
    reliability_statistic = property_test.reliability_statistic(
        challenges, measurements=measurements)
    print('The reliability statistic is {}.'.format(reliability_statistic))
Exemple #10
0
    def test_uniqueness_statistic(self):
        """This method tests the uniqueness statistic function."""
        n = 8
        k = 1
        N = 2**n
        instance_count = 11
        measurements = 1
        transformation = LTFArray.transform_id
        combiner = LTFArray.combiner_xor

        instances = [
            LTFArray(weight_array=LTFArray.normal_weights(
                n=n, k=k, random_instance=RandomState(0xA1A1 + i)),
                     transform=transformation,
                     combiner=combiner) for i in range(instance_count)
        ]

        challenges = sample_inputs(n, N, random_instance=RandomState(0xFAB10))

        property_test = PropertyTest(instances)
        uniqueness_statistic = property_test.uniqueness_statistic(
            challenges, measurements=measurements)
        # For normal distributed weights is the expected uniqueness near 0.5
        self.assertEqual(round(uniqueness_statistic['mean'], 1), 0.5)
Exemple #11
0
def example_uniqueness_statistic():
    """This method shows the uniqueness statistic function."""
    n = 8
    k = 1
    N = 2**n
    instance_count = 11
    measurements = 1
    transformation = NoisyLTFArray.transform_id
    combiner = NoisyLTFArray.combiner_xor
    weights = NoisyLTFArray.normal_weights(n=n, k=k)
    instances = [
        NoisyLTFArray(
            weight_array=weights,
            transform=transformation,
            combiner=combiner,
            sigma_noise=NoisyLTFArray.sigma_noise_from_random_weights(
                n, weights)) for _ in range(instance_count)
    ]

    challenges = array(list(sample_inputs(n, N)))
    property_test = PropertyTest(instances)
    uniqueness_statistic = property_test.uniqueness_statistic(
        challenges, measurements=measurements)
    print('The uniqueness statistic is {}.'.format(uniqueness_statistic))