Exemple #1
0
def numpify(space, w_object):
    """Convert the object to a W_NumpyObject"""
    # XXX: code duplication with _array()
    from pypy.module.micronumpy import strides
    if isinstance(w_object, W_NumpyObject):
        return w_object
    # for anything that isn't already an array, try __array__ method first
    w_array = try_array_method(space, w_object)
    if w_array is not None:
        return w_array

    shape, elems_w = strides.find_shape_and_elems(space, w_object, None)
    dtype = strides.find_dtype_for_seq(space, elems_w, None)
    if dtype is None:
        dtype = descriptor.get_dtype_cache(space).w_float64dtype
    elif dtype.is_str_or_unicode() and dtype.elsize < 1:
        # promote S0 -> S1, U0 -> U1
        dtype = descriptor.variable_dtype(space, dtype.char + '1')

    if len(elems_w) == 1:
        return dtype.coerce(space, elems_w[0])
    else:
        w_arr = W_NDimArray.from_shape(space, shape, dtype)
        loop.assign(space, w_arr, elems_w)
        return w_arr
Exemple #2
0
def numpify(space, w_object):
    """Convert the object to a W_NumpyObject"""
    # XXX: code duplication with _array()
    from pypy.module.micronumpy import strides
    if isinstance(w_object, W_NumpyObject):
        return w_object
    # for anything that isn't already an array, try __array__ method first
    w_array = try_array_method(space, w_object)
    if w_array is not None:
        return w_array

    shape, elems_w = strides.find_shape_and_elems(space, w_object, None)
    dtype = find_dtype_for_seq(space, elems_w, None)
    if dtype is None:
        dtype = descriptor.get_dtype_cache(space).w_float64dtype
    elif dtype.is_str_or_unicode() and dtype.elsize < 1:
        # promote S0 -> S1, U0 -> U1
        dtype = descriptor.variable_dtype(space, dtype.char + '1')

    if len(elems_w) == 1:
        return dtype.coerce(space, elems_w[0])
    else:
        w_arr = W_NDimArray.from_shape(space, shape, dtype)
        loop.assign(space, w_arr, elems_w)
        return w_arr
Exemple #3
0
def numpify(space, w_object):
    """Convert the object to a W_NumpyObject"""
    # XXX: code duplication with _array()
    if isinstance(w_object, W_NumpyObject):
        return w_object
    # for anything that isn't already an array, try __array__ method first
    w_array = try_array_method(space, w_object)
    if w_array is not None:
        return w_array

    if is_scalar_like(space, w_object, dtype=None):
        dtype = scalar2dtype(space, w_object)
        if dtype.is_str_or_unicode() and dtype.elsize < 1:
            # promote S0 -> S1, U0 -> U1
            dtype = descriptor.variable_dtype(space, dtype.char + '1')
        return dtype.coerce(space, w_object)

    shape, elems_w = _find_shape_and_elems(space, w_object)
    dtype = find_dtype_for_seq(space, elems_w, None)
    w_arr = W_NDimArray.from_shape(space, shape, dtype)
    loop.assign(space, w_arr, elems_w)
    return w_arr
Exemple #4
0
def numpify(space, w_object):
    """Convert the object to a W_NumpyObject"""
    # XXX: code duplication with _array()
    if isinstance(w_object, W_NumpyObject):
        return w_object
    # for anything that isn't already an array, try __array__ method first
    w_array = try_array_method(space, w_object)
    if w_array is not None:
        return w_array

    if is_scalar_like(space, w_object, dtype=None):
        dtype = scalar2dtype(space, w_object)
        if dtype.is_str_or_unicode() and dtype.elsize < 1:
            # promote S0 -> S1, U0 -> U1
            dtype = descriptor.variable_dtype(space, dtype.char + '1')
        return dtype.coerce(space, w_object)

    shape, elems_w = _find_shape_and_elems(space, w_object)
    dtype = find_dtype_for_seq(space, elems_w, None)
    w_arr = W_NDimArray.from_shape(space, shape, dtype)
    loop.assign(space, w_arr, elems_w)
    return w_arr
Exemple #5
0
def array(space, w_object, w_dtype=None, copy=True, w_order=None, subok=False,
          ndmin=0):
    from pypy.module.micronumpy import strides

    # for anything that isn't already an array, try __array__ method first
    if not isinstance(w_object, W_NDimArray):
        w___array__ = space.lookup(w_object, "__array__")
        if w___array__ is not None:
            if space.is_none(w_dtype):
                w_dtype = space.w_None
            w_array = space.get_and_call_function(w___array__, w_object, w_dtype)
            if isinstance(w_array, W_NDimArray):
                # feed w_array back into array() for other properties
                return array(space, w_array, w_dtype, False, w_order, subok, ndmin)
            else:
                raise oefmt(space.w_ValueError,
                            "object __array__ method not producing an array")

    dtype = descriptor.decode_w_dtype(space, w_dtype)

    if space.is_none(w_order):
        order = 'C'
    else:
        order = space.str_w(w_order)
        if order == 'K':
            order = 'C'
        if order != 'C':  # or order != 'F':
            raise oefmt(space.w_ValueError, "Unknown order: %s", order)

    # arrays with correct dtype
    if isinstance(w_object, W_NDimArray) and \
            (space.is_none(w_dtype) or w_object.get_dtype() is dtype):
        shape = w_object.get_shape()
        if copy:
            w_ret = w_object.descr_copy(space)
        else:
            if ndmin <= len(shape):
                return w_object
            new_impl = w_object.implementation.set_shape(space, w_object, shape)
            w_ret = W_NDimArray(new_impl)
        if ndmin > len(shape):
            shape = [1] * (ndmin - len(shape)) + shape
            w_ret.implementation = w_ret.implementation.set_shape(space,
                                                                  w_ret, shape)
        return w_ret

    # not an array or incorrect dtype
    shape, elems_w = strides.find_shape_and_elems(space, w_object, dtype)
    if dtype is None or (dtype.is_str_or_unicode() and dtype.elsize < 1):
        dtype = strides.find_dtype_for_seq(space, elems_w, dtype)
        if dtype is None:
            dtype = descriptor.get_dtype_cache(space).w_float64dtype
        elif dtype.is_str_or_unicode() and dtype.elsize < 1:
            # promote S0 -> S1, U0 -> U1
            dtype = descriptor.variable_dtype(space, dtype.char + '1')

    if ndmin > len(shape):
        shape = [1] * (ndmin - len(shape)) + shape
    w_arr = W_NDimArray.from_shape(space, shape, dtype, order=order)
    if len(elems_w) == 1:
        w_arr.set_scalar_value(dtype.coerce(space, elems_w[0]))
    else:
        loop.assign(space, w_arr, elems_w)
    return w_arr
Exemple #6
0
def _array(space,
           w_object,
           w_dtype=None,
           copy=True,
           w_order=None,
           subok=False):
    from pypy.module.micronumpy import strides

    # for anything that isn't already an array, try __array__ method first
    if not isinstance(w_object, W_NDimArray):
        w_array = try_array_method(space, w_object, w_dtype)
        if w_array is not None:
            # continue with w_array, but do further operations in place
            w_object = w_array
            copy = False
    if not isinstance(w_object, W_NDimArray):
        w_array = try_interface_method(space, w_object)
        if w_array is not None:
            w_object = w_array
            copy = False
    dtype = descriptor.decode_w_dtype(space, w_dtype)

    if space.is_none(w_order):
        order = 'C'
    else:
        order = space.str_w(w_order)
        if order == 'K':
            order = 'C'
        if order != 'C':  # or order != 'F':
            raise oefmt(space.w_ValueError, "Unknown order: %s", order)

    if isinstance(w_object, W_NDimArray):
        if (dtype is None or w_object.get_dtype() is dtype):
            if copy and (subok or type(w_object) is W_NDimArray):
                return w_object.descr_copy(space, w_order)
            elif not copy and (subok or type(w_object) is W_NDimArray):
                return w_object
        if subok and not type(w_object) is W_NDimArray:
            raise oefmt(space.w_NotImplementedError,
                        "array(..., subok=True) only partially implemented")
        # we have a ndarray, but need to copy or change dtype
        if dtype is None:
            dtype = w_object.get_dtype()
        if dtype != w_object.get_dtype():
            # silently reject the copy value
            copy = True
        if copy:
            shape = w_object.get_shape()
            elems_w = [None] * w_object.get_size()
            elsize = w_object.get_dtype().elsize
            # TODO - use w_object.implementation without copying to a list
            # unfortunately that causes a union error in translation
            for i in range(w_object.get_size()):
                elems_w[i] = w_object.implementation.getitem(i * elsize)
        else:
            imp = w_object.implementation
            with imp as storage:
                sz = support.product(w_object.get_shape()) * dtype.elsize
                return W_NDimArray.from_shape_and_storage(space,
                                                          w_object.get_shape(),
                                                          storage,
                                                          dtype,
                                                          storage_bytes=sz,
                                                          w_base=w_object,
                                                          start=imp.start)
    else:
        # not an array
        shape, elems_w = strides.find_shape_and_elems(space, w_object, dtype)
    if dtype is None or (dtype.is_str_or_unicode() and dtype.elsize < 1):
        dtype = strides.find_dtype_for_seq(space, elems_w, dtype)
        if dtype is None:
            dtype = descriptor.get_dtype_cache(space).w_float64dtype
        elif dtype.is_str_or_unicode() and dtype.elsize < 1:
            # promote S0 -> S1, U0 -> U1
            dtype = descriptor.variable_dtype(space, dtype.char + '1')

    w_arr = W_NDimArray.from_shape(space, shape, dtype, order=order)
    if support.product(shape) == 1:
        w_arr.set_scalar_value(dtype.coerce(space, elems_w[0]))
    else:
        loop.assign(space, w_arr, elems_w)
    return w_arr
Exemple #7
0
def _array(space, w_object, w_dtype=None, copy=True, w_order=None, subok=False):
    from pypy.module.micronumpy import strides

    # for anything that isn't already an array, try __array__ method first
    if not isinstance(w_object, W_NDimArray):
        w_array = try_array_method(space, w_object, w_dtype)
        if w_array is not None:
            # continue with w_array, but do further operations in place
            w_object = w_array
            copy = False
    if not isinstance(w_object, W_NDimArray):
        w_array = try_interface_method(space, w_object)
        if w_array is not None:
            w_object = w_array
            copy = False
    dtype = descriptor.decode_w_dtype(space, w_dtype)

    if space.is_none(w_order):
        order = 'C'
    else:
        order = space.str_w(w_order)
        if order == 'K':
            order = 'C'
        if order != 'C':  # or order != 'F':
            raise oefmt(space.w_ValueError, "Unknown order: %s", order)

    if isinstance(w_object, W_NDimArray):
        if (dtype is None or w_object.get_dtype() is dtype):
            if copy and (subok or type(w_object) is W_NDimArray):
                return w_object.descr_copy(space, w_order)
            elif not copy and (subok or type(w_object) is W_NDimArray):
                return w_object
        if subok and not type(w_object) is W_NDimArray:
            raise oefmt(space.w_NotImplementedError,
                "array(..., subok=True) only partially implemented")
        # we have a ndarray, but need to copy or change dtype
        if dtype is None:
            dtype = w_object.get_dtype()
        if dtype != w_object.get_dtype():
            # silently reject the copy value
            copy = True
        if copy:
            shape = w_object.get_shape()
            w_arr = W_NDimArray.from_shape(space, shape, dtype, order=order)
            if support.product(shape) == 1:
                w_arr.set_scalar_value(dtype.coerce(space,
                        w_object.implementation.getitem(0)))
            else:
                loop.setslice(space, shape, w_arr.implementation, w_object.implementation)
            return w_arr
        else:
            imp = w_object.implementation
            w_base = w_object
            if imp.base() is not None:
                w_base = imp.base()
            with imp as storage:
                sz = support.product(w_object.get_shape()) * dtype.elsize
                return W_NDimArray.from_shape_and_storage(space,
                    w_object.get_shape(), storage, dtype, storage_bytes=sz,
                    w_base=w_base, start=imp.start)
    else:
        # not an array
        shape, elems_w = strides.find_shape_and_elems(space, w_object, dtype)
    if dtype is None and space.isinstance_w(w_object, space.w_buffer):
        dtype = descriptor.get_dtype_cache(space).w_uint8dtype
    if dtype is None or (dtype.is_str_or_unicode() and dtype.elsize < 1):
        dtype = find_dtype_for_seq(space, elems_w, dtype)
        if dtype is None:
            dtype = descriptor.get_dtype_cache(space).w_float64dtype
        elif dtype.is_str_or_unicode() and dtype.elsize < 1:
            # promote S0 -> S1, U0 -> U1
            dtype = descriptor.variable_dtype(space, dtype.char + '1')

    w_arr = W_NDimArray.from_shape(space, shape, dtype, order=order)
    if support.product(shape) == 1: # safe from overflow since from_shape checks
        w_arr.set_scalar_value(dtype.coerce(space, elems_w[0]))
    else:
        loop.assign(space, w_arr, elems_w)
    return w_arr
Exemple #8
0
def _array(space,
           w_object,
           w_dtype=None,
           copy=True,
           w_order=None,
           subok=False):

    from pypy.module.micronumpy.boxes import W_GenericBox
    # numpy testing calls array(type(array([]))) and expects a ValueError
    if space.isinstance_w(w_object, space.w_type):
        raise oefmt(space.w_ValueError,
                    "cannot create ndarray from type instance")
    # for anything that isn't already an array, try __array__ method first
    dtype = descriptor.decode_w_dtype(space, w_dtype)
    if not isinstance(w_object, W_NDimArray):
        w_array = try_array_method(space, w_object, w_dtype)
        if w_array is None:
            if (not space.isinstance_w(w_object, space.w_bytes)
                    and not space.isinstance_w(w_object, space.w_unicode)
                    and not isinstance(w_object, W_GenericBox)):
                # use buffer interface
                w_object = _array_from_buffer_3118(space, w_object, dtype)
        else:
            # continue with w_array, but do further operations in place
            w_object = w_array
            copy = False
            dtype = w_object.get_dtype()
    if not isinstance(w_object, W_NDimArray):
        w_array, _copy = try_interface_method(space, w_object, copy)
        if w_array is not None:
            w_object = w_array
            copy = _copy
            dtype = w_object.get_dtype()

    if isinstance(w_object, W_NDimArray):
        npy_order = order_converter(space, w_order, NPY.ANYORDER)
        if (dtype is None or w_object.get_dtype() is dtype) and (
                subok or type(w_object) is W_NDimArray):
            flags = w_object.get_flags()
            must_copy = copy
            must_copy |= (npy_order == NPY.CORDER
                          and not flags & NPY.ARRAY_C_CONTIGUOUS)
            must_copy |= (npy_order == NPY.FORTRANORDER
                          and not flags & NPY.ARRAY_F_CONTIGUOUS)
            if must_copy:
                return w_object.descr_copy(space, space.newint(npy_order))
            else:
                return w_object
        if subok and not type(w_object) is W_NDimArray:
            raise oefmt(space.w_NotImplementedError,
                        "array(..., subok=True) only partially implemented")
        # we have a ndarray, but need to copy or change dtype
        if dtype is None:
            dtype = w_object.get_dtype()
        if dtype != w_object.get_dtype():
            # silently reject the copy value
            copy = True
        if copy:
            shape = w_object.get_shape()
            order = support.get_order_as_CF(w_object.get_order(), npy_order)
            w_arr = W_NDimArray.from_shape(space, shape, dtype, order=order)
            if support.product(shape) == 1:
                w_arr.set_scalar_value(
                    dtype.coerce(space, w_object.implementation.getitem(0)))
            else:
                loop.setslice(space, shape, w_arr.implementation,
                              w_object.implementation)
            return w_arr
        else:
            imp = w_object.implementation
            w_base = w_object
            sz = w_base.get_size() * dtype.elsize
            if imp.base() is not None:
                w_base = imp.base()
                if type(w_base) is W_NDimArray:
                    sz = w_base.get_size() * dtype.elsize
                else:
                    # this must succeed (mmap, buffer, ...)
                    sz = space.int_w(space.call_method(w_base, 'size'))
            with imp as storage:
                return W_NDimArray.from_shape_and_storage(space,
                                                          w_object.get_shape(),
                                                          storage,
                                                          dtype,
                                                          storage_bytes=sz,
                                                          w_base=w_base,
                                                          strides=imp.strides,
                                                          start=imp.start)
    else:
        # not an array
        npy_order = order_converter(space, w_order, NPY.CORDER)
        shape, elems_w = find_shape_and_elems(space, w_object, dtype)
    if dtype is None and space.isinstance_w(w_object, space.w_buffer):
        dtype = descriptor.get_dtype_cache(space).w_uint8dtype
    if dtype is None or (dtype.is_str_or_unicode() and dtype.elsize < 1):
        dtype = find_dtype_for_seq(space, elems_w, dtype)

    w_arr = W_NDimArray.from_shape(space, shape, dtype, order=npy_order)
    if support.product(
            shape) == 1:  # safe from overflow since from_shape checks
        w_arr.set_scalar_value(dtype.coerce(space, elems_w[0]))
    else:
        loop.assign(space, w_arr, elems_w)
    return w_arr
Exemple #9
0
def _array(space, w_object, w_dtype=None, copy=True, w_order=None, subok=False):

    from pypy.module.micronumpy.boxes import W_GenericBox
    # numpy testing calls array(type(array([]))) and expects a ValueError
    if space.isinstance_w(w_object, space.w_type):
        raise oefmt(space.w_ValueError, "cannot create ndarray from type instance")
    # for anything that isn't already an array, try __array__ method first
    dtype = descriptor.decode_w_dtype(space, w_dtype)
    if not isinstance(w_object, W_NDimArray):
        w_array = try_array_method(space, w_object, w_dtype)
        if w_array is None:
            if (    not space.isinstance_w(w_object, space.w_str) and 
                    not space.isinstance_w(w_object, space.w_unicode) and
                    not isinstance(w_object, W_GenericBox)):
                # use buffer interface
                w_object = _array_from_buffer_3118(space, w_object, dtype)
        else:
            # continue with w_array, but do further operations in place
            w_object = w_array
            copy = False
            dtype = w_object.get_dtype()
    if not isinstance(w_object, W_NDimArray):
        w_array, _copy = try_interface_method(space, w_object, copy)
        if w_array is not None:
            w_object = w_array
            copy = _copy
            dtype = w_object.get_dtype()

    if isinstance(w_object, W_NDimArray):
        npy_order = order_converter(space, w_order, NPY.ANYORDER)
        if (dtype is None or w_object.get_dtype() is dtype) and (subok or
                type(w_object) is W_NDimArray):
            flags = w_object.get_flags()
            must_copy = copy
            must_copy |= (npy_order == NPY.CORDER and not flags & NPY.ARRAY_C_CONTIGUOUS)
            must_copy |= (npy_order == NPY.FORTRANORDER and not flags & NPY.ARRAY_F_CONTIGUOUS)
            if must_copy:
                return w_object.descr_copy(space, space.wrap(npy_order))
            else:
                return w_object
        if subok and not type(w_object) is W_NDimArray:
            raise oefmt(space.w_NotImplementedError,
                "array(..., subok=True) only partially implemented")
        # we have a ndarray, but need to copy or change dtype
        if dtype is None:
            dtype = w_object.get_dtype()
        if dtype != w_object.get_dtype():
            # silently reject the copy value
            copy = True
        if copy:
            shape = w_object.get_shape()
            order = support.get_order_as_CF(w_object.get_order(), npy_order)
            w_arr = W_NDimArray.from_shape(space, shape, dtype, order=order)
            if support.product(shape) == 1:
                w_arr.set_scalar_value(dtype.coerce(space,
                        w_object.implementation.getitem(0)))
            else:
                loop.setslice(space, shape, w_arr.implementation, w_object.implementation)
            return w_arr
        else:
            imp = w_object.implementation
            w_base = w_object
            sz = w_base.get_size() * dtype.elsize
            if imp.base() is not None:
                w_base = imp.base()
                if type(w_base) is W_NDimArray:
                    sz = w_base.get_size() * dtype.elsize
                else:
                    # this must succeed (mmap, buffer, ...)
                    sz = space.int_w(space.call_method(w_base, 'size'))
            with imp as storage:
                return W_NDimArray.from_shape_and_storage(space,
                    w_object.get_shape(), storage, dtype, storage_bytes=sz,
                    w_base=w_base, strides=imp.strides, start=imp.start)
    else:
        # not an array
        npy_order = order_converter(space, w_order, NPY.CORDER)
        shape, elems_w = find_shape_and_elems(space, w_object, dtype)
    if dtype is None and space.isinstance_w(w_object, space.w_buffer):
        dtype = descriptor.get_dtype_cache(space).w_uint8dtype
    if dtype is None or (dtype.is_str_or_unicode() and dtype.elsize < 1):
        dtype = find_dtype_for_seq(space, elems_w, dtype)

    w_arr = W_NDimArray.from_shape(space, shape, dtype, order=npy_order)
    if support.product(shape) == 1: # safe from overflow since from_shape checks
        w_arr.set_scalar_value(dtype.coerce(space, elems_w[0]))
    else:
        loop.assign(space, w_arr, elems_w)
    return w_arr
Exemple #10
0
def _array(space, w_object, w_dtype=None, copy=True, w_order=None, subok=False):
    from pypy.module.micronumpy import strides

    # for anything that isn't already an array, try __array__ method first
    if not isinstance(w_object, W_NDimArray):
        w_array = try_array_method(space, w_object, w_dtype)
        if w_array is not None:
            # continue with w_array, but do further operations in place
            w_object = w_array
            copy = False

    dtype = descriptor.decode_w_dtype(space, w_dtype)

    if space.is_none(w_order):
        order = 'C'
    else:
        order = space.str_w(w_order)
        if order == 'K':
            order = 'C'
        if order != 'C':  # or order != 'F':
            raise oefmt(space.w_ValueError, "Unknown order: %s", order)

    if isinstance(w_object, W_NDimArray):
        if (dtype is None or w_object.get_dtype() is dtype):
            if copy and (subok or type(w_object) is W_NDimArray):
                return w_object.descr_copy(space, w_order)
            elif not copy and (subok or type(w_object) is W_NDimArray):
                return w_object
        # we have a ndarray, but need to copy or change dtype or create W_NDimArray
        if dtype is None:
            dtype = w_object.get_dtype()
        if dtype != w_object.get_dtype():
            # silently reject the copy value
            copy = True
        if copy:
            shape = w_object.get_shape()
            _elems_w = w_object.reshape(space, space.wrap(-1))
            elems_w = [None] * w_object.get_size()
            for i in range(len(elems_w)):
                elems_w[i] = _elems_w.descr_getitem(space, space.wrap(i))
        elif subok:
            raise oefmt(space.w_NotImplementedError, 
                "array(...copy=False, subok=True) not implemented yet")
        else:
            sz = support.product(w_object.get_shape()) * dtype.elsize
            return W_NDimArray.from_shape_and_storage(space,
                w_object.get_shape(),w_object.implementation.storage,
                dtype, storage_bytes=sz, w_base=w_object)
    else:
        # not an array
        shape, elems_w = strides.find_shape_and_elems(space, w_object, dtype)
    if dtype is None or (dtype.is_str_or_unicode() and dtype.elsize < 1):
        dtype = strides.find_dtype_for_seq(space, elems_w, dtype)
        if dtype is None:
            dtype = descriptor.get_dtype_cache(space).w_float64dtype
        elif dtype.is_str_or_unicode() and dtype.elsize < 1:
            # promote S0 -> S1, U0 -> U1
            dtype = descriptor.variable_dtype(space, dtype.char + '1')

    w_arr = W_NDimArray.from_shape(space, shape, dtype, order=order)
    if len(elems_w) == 1:
        w_arr.set_scalar_value(dtype.coerce(space, elems_w[0]))
    else:
        loop.assign(space, w_arr, elems_w)
    return w_arr