Exemple #1
0
def get_points(num_bits, num_samples):

    # the max number we can have with the specified number of bits
    max_num = 2**(num_bits) - 1

    qvm = QVMConnection()

    # create the Quill program
    # each Qubit is put through an H gate to put it in the Hammard state. Every
    # time we measure a qubit in this state, it has a 50-50 chance of being a 1
    # or 0. By doing this we can generate random bits
    p = Program()
    for i in range(0, num_bits):
        p.inst(H(i))  # put each qubit in the Hammard state
    p.measure_all()

    # run the Quill program on the quantum virtual machine
    xs = qvm.run(p, trials=num_samples)
    # convert the list of lists of results for each trial into a list of
    # floating point numbers between 0-1. These will be our x coordinates
    xs = list(map(lambda x: bits_to_int(x) / max_num, xs))

    ys = qvm.run(p, trials=num_samples)
    ys = list(map(lambda y: bits_to_int(y) / max_num, ys))

    return zip(xs, ys)
def qvm():
    try:
        qvm = QVMConnection(random_seed=52)
        qvm.run(Program(Id(0)), [])
        return qvm
    except (RequestException, UnknownApiError, QVMNotRunning, TypeError) as e:
        return pytest.skip("This test requires QVM connection: {}".format(e))
Exemple #3
0
def cxn():
    # DEPRECATED
    try:
        cxn = QVMConnection(endpoint='http://localhost:5000')
        cxn.run(Program(I(0), MEASURE(0, 0)), [0])
        return cxn
    except RequestException as e:
        return pytest.skip("This test requires a running local QVM: {}".format(e))
Exemple #4
0
def qvm():
    try:
        qvm = QVMConnection(random_seed=52)
        qvm.run(Program(I(0)), [])
        return qvm
    except (RequestException, QVMNotRunning, UnknownApiError) as e:
        return pytest.skip("This test requires QVM connection: {}".format(e))
    except QVMVersionMismatch as e:
        return pytest.skip("This test requires a different version of the QVM: {}".format(e))
Exemple #5
0
def test_sync_run(qvm: QVMConnection):
    assert qvm.run(BELL_STATE_MEASURE, [0, 1], trials=2) == [[0, 0], [1, 1]]

    # Test range as well
    assert qvm.run(BELL_STATE_MEASURE, range(2), trials=2) == [[0, 0], [1, 1]]

    # Test no classical addresses
    assert qvm.run(BELL_STATE_MEASURE, trials=2) == [[0, 0], [1, 1]]

    with pytest.raises(ValueError):
        qvm.run(EMPTY_PROGRAM)
Exemple #6
0
def add(a: int, b: int):
    qvm = QVMConnection()
    p = Program()

    # make sure the first number is the greater
    if a < b:
        t = a
        a = b
        b = t

    # Number of bits needed to store the sum of
    # numbers a and b for which bitlen(a) <= n and bitlen(b) <= n is n + 1
    bitlen_a = max(bitlen(a), 1) + 1
    bitlen_b = max(bitlen(b), 1)

    a_qubits = list(range(0, bitlen_a))
    b_qubits = list(range(bitlen_a, bitlen_a + bitlen_b))

    p += prep_qubits(a_qubits, a)
    p += prep_qubits(b_qubits, b)

    p += add_qubits(a_qubits, b_qubits)

    p.inst([MEASURE(j, i) for i, j in enumerate(a_qubits)])

    result, = qvm.run(p, trials=1)
    return sum([k * 2**i for i, k in enumerate(result)])
def test_general(code: stabilizer_code.StabilizerCode,
                 initial_state_prep: Program,
                 error_prog: Program,
                 num_trials: int,
                 inverse_initial_state_prep_param=None):
    qvm = QVMConnection()

    # find inverse of initial state prep to be applied at end before measurement
    if inverse_initial_state_prep_param == None:
        inverse_initial_state_prep = Program()
        for instruction in reversed(initial_state_prep):
            # inverse gate
            instruction_name = (str(instruction).split())[0]
            if instruction_name in ['I', 'X', 'Y', 'Z', 'H', 'CNOT', 'CZ']:
                new_instruction_name = instruction_name
            else:
                new_instruction_name = 'DAGGER ' + instruction_name
            new_instruction_qubits = [str(q.index) for q in instruction.qubits]
            inverse_initial_state_prep += Program(
                ' '.join([new_instruction_name] + new_instruction_qubits))
    else:
        inverse_initial_state_prep = inverse_initial_state_prep_param
    prog = initial_state_prep + code.encoding_program + error_prog + \
        code.decoding_program + inverse_initial_state_prep

    prog.measure_all()
    measured_bits = np.array(qvm.run(prog, trials=num_trials))
    decoded_msg_bits = measured_bits[:, :code.k]
    # part which contains decoded qubits
    num_errors = np.count_nonzero(np.sum(decoded_msg_bits, axis=1))
    #print('num_trials', num_trials)
    #print('num_errors', num_errors)
    return num_errors
Exemple #8
0
def run_t1(qubit, filename):
    qvm = QVMConnection()
    # qc = get_qc('9q-square-qvm')
    model_info = get_model(filename)
    noisy_p = Program("NOISY-RX-PLUS-180 " + str(qubit))
    noisy_p = Program(model_info) + noisy_p
    probabilities = []
    x = []
    delay_duration = 0.0 / NANO_SECOND_DENOMINATOR
    for t in range(NUM_STEPS):  # each loop is 50 ns
        noisy_p_measured = noisy_p.copy().measure_all()
        result = np.sum(qvm.run(noisy_p_measured, trials=NUM_TRIALS))
        # if (t % 10 == 0):
        #     print("T: {} Noisy Result: {}".format(t, result))
        probability = float(result) / NUM_TRIALS
        probabilities.append(probability)
        x.append(delay_duration)
        noisy_p = noisy_p + Program(
            ("NOISY-I " + str(qubit)))  # apply noisy I every single loop
        delay_duration += 50.0 / NANO_SECOND_DENOMINATOR

    y_np = np.array(probabilities)
    x_np = np.array(x)
    plt.plot(x_np, y_np)
    opt, pcov = curve_fit(func_t1,
                          x_np,
                          y_np,
                          maxfev=1000000,
                          p0=(0.5, 1.0 / 1e-6, 0.5))
    plt.plot(x_np, func_t1(x_np, *opt), 'r--')
    plt.show()
    a, k, b = opt
    return 1.0 / k
def quantumcomp(charlist, bytelist, explicitprinting=0, samples=1):
    # empty list for results for each letter
    res = []
    # 8 bits in 1 byte
    bit = [None] * 8
    for j in range(0, len(bytelist)):
        # Do quantum stuff now we have our bit string
        qvm = QVMConnection()
        prog = Program()
        # make 8 individual bits for the 8 qubits
        bit = get_binary_from_byte(bytelist[j])
        print('\n#--------------------------------------------------------#')
        print('# Character= %s Bitstring = %s' % (charlist[j], bit))
        print('#--------------------------------------------------------#')
        # don't what this is for...
        cr = []
        for i in range(0, len(bit)):
            # do x rotation to get 1
            if bit[i] == 1:
                prog.inst(X(i))
            # measure the i-th qubit
            prog.measure(i, i)

        # store measurement outcomes, can change number of shots
        results = (qvm.run(prog, cr, samples))
        # use list for results for each char
        res.append(results[0])
        if explicitprinting == 1:
            print(compiletoquil(prog))
        print('\n#--------------------------------------------------------#')
        print('# Result =', results[0])
        print('#--------------------------------------------------------#')
    return res
Exemple #10
0
def throw_octahedral_die():
    """Throws a fair octahedral die."""
    qvm = QVMConnection(random_seed=int(time.time() * 10000000))
    p = Program(H(0), H(1), H(2)).measure_all()

    result = qvm.run(p)

    return bit_list_to_int(result[0]) + 1
Exemple #11
0
def phase_estimation(ancillary_start,
                     ancillary_num,
                     time,
                     atomic_distance,
                     state,
                     trails=5,
                     trotter_order=2):
    """
    Measures the phase by using the phase estimation algorithm (PEA)

    :param ancillary_start: first ancillary qubit
    :param ancillary_num: how many ancillaries to use corresponds
            to precision in PEA algorithm
    :param time: t in exp(-iHt), where H is the Hamiltonian
    :param atomic_distance:  the distance between to H atoms in H2 molecule
    :param state: ground state (0) or some excited state (1, 2, 3)
    :param trails: how many measurement to make in order to estimate the most
                    frequent result

    :return: the phase from exp(-iHt) |psi> = exp(-i2pi phase) |psi> (Schrodinger)
    """

    # initialization of the state
    init_qubit = Program()
    if state == 0:
        init_qubit.inst(X(0)).inst(X(1))
    elif state == 1:
        init_qubit.inst(X(0)).inst(X(2))
    elif state == 2:
        init_qubit.inst(X(0)).inst(X(3))
    elif state == 3:
        init_qubit.inst(X(2)).inst(X(3))
    else:
        print(
            "Wrong input of state. State should be 0, 1, 2, 3. Your input is "
            + str(state))
        raise ValueError
    prog = init_qubit + pea_program(ancillary_start, ancillary_num, time,
                                    atomic_distance, trotter_order)

    ro = prog.declare('ro', memory_type='BIT', memory_size=ancillary_num)
    # measurement of ancillary qubits
    for cindex, qindex in enumerate(
            range(ancillary_start, ancillary_start + ancillary_num)):
        prog += MEASURE(qindex, ro[cindex])

    qvm = QVMConnection()
    cregister = list(range(0, ancillary_num))
    m_reg = qvm.run(prog, cregister, trails)

    # taking most frequent result from the phase elements. The number of the elements are defined by the trails
    phase, major_index = majority_and_index(
        [bitstring_to_value(bitst) for bitst in m_reg])
    print(str(phase) + "  =  " + str(m_reg[major_index]))

    return phase
Exemple #12
0
def get_dist(program, qubits):
    bits = [x for x in range(len(qubits))]
    strs = [bin(x)[2:].zfill(len(qubits)) for x in range(2**len(qubits))]
    probs = []
    qvm = QVMConnection()
    out = qvm.run(program, bits, trials=10000)
    for i in strs:
        matches = [x for x in out if string_checker(i, x)]
        probs.append(len(matches) / len(out))
        print("String {} occurs with probability {}".format(i, probs[-1]))
    return probs
def grover(marked_element):
    # Determine number of qubits needed
    n = len(marked_element)
    N = 2**n
    no_marked = int(marked_element, 2)

    # Determine number of times to iterate
    T = int(round(np.pi * np.sqrt(N) / 4 - 0.5))
    print('Number of iterations T =', T)

    # Invoking and renaming Program and Connection
    qvm = QVMConnection()
    p = Program()

    # Step 1: Start with qubits in equal superposition
    for i in range(n):
        p.inst(H(i))

    # Defining Oracle matrices: U_0 and U_f
    U_0 = np.eye(N)
    U_0[0][0] = -1
    U_f = np.eye(N)
    U_f[no_marked][no_marked] = -1

    # Defining Oracle gates
    p.defgate("U0", U_0)
    p.defgate("Uf", U_f)

    # Step 2: Repeat applications of U_f and D
    for i in range(T):
        # Apply U_f
        p.inst(("Uf", ) + tuple(range(n)))

        # Apply D
        for j in range(n):
            p.inst(H(j))

        p.inst(("U0", ) + tuple(range(n)))

        for j in range(n):
            p.inst(H(j))

    # Step 3: Measure all the qubits and output result
    for i in range(n):
        p.measure(i)

    # Run the program
    results = qvm.run(p, list(range(n)), 1)

    print('Element found =', results[0])
    return results[0]
Exemple #14
0
class QDice:
    def __init__(self):
        self.qvm = QVMConnection()

    def roll(self, hadamards=3, trials=1):
        return self.qvm.run(self.magic(hadamards=hadamards).measure_all(),
                            trials=trials)

    def magic(self, hadamards=3):
        return P(*list(map(lambda i: H(i), range(hadamards))))

    @staticmethod
    def number(roll):
        return 1 + reduce(lambda i, j: 2 * i + j, roll)
Exemple #15
0
class QColor:

    def __init__(self, simulate=False):

        self.qvm = QVMConnection()
        self.sim = simulate

    def run(self, trials=65536, simulate=False):

        if self.sim:
            return random.random((trials, 3)).round()
        else:
            return self.qvm.run(
                self.rgb.measure_all(), trials=trials)

    @property
    def rgb(self):
        return Program(H(0), H(1), H(2))
Exemple #16
0
 def playGame(self):
     """Starts the game"""
     while self.playerHasCards():
         for player in self.players:
             self.displayState()
             self.theGame.inst(player.turn())
     self.theGame.measure_all()
     #print(self.theGame)
     qvm = QVMConnection()
     results = qvm.run(self.theGame)
     resultsRev = results[0][:]
     resultsRev.reverse() #So the printed results are in the same order as everything else.
     print('The bits were measured as: ',resultsRev)
     winners = self.checkWinner(results[0])
     if len(winners) != 1:
         print("It's a draw!")
     else:
         print("Player " + str(winners[0]+1) + " wins!")
Exemple #17
0
def deutsch_jozsa(f):
    # Determine number of qubits needed
    N = len(f)
    n = int(np.log2(N))

    # Invoking and renaming
    qvm = QVMConnection()
    p = Program()

    # Applying first round of n Hadamards
    for i in range(n):
        p.inst(H(i))

    # Defining the Oracle matrix
    U_f = np.eye(N)
    for i in range(N):
        if f[i] == '1':
            U_f[i][i] = -1
    # Adding the Oracle matrix as a gate
    p.defgate("Uf", U_f)
    # Applying Oracle gate
    p.inst(("Uf", ) + tuple(range(n)))

    # Applying second run of n Hadamards
    for i in range(n):
        p.inst(H(i))

    # Measure all the qubits and output result
    for i in range(n):
        p.measure(i, i)

    # Run the program
    classical_reg = list(range(n))
    results = qvm.run(p, classical_reg, 1)

    y = 0
    for i in range(n):
        y = y + 2**i * int(results[0][i])

    if y == 0:
        print('Function is constant.')
    else:
        print('Function is balanced.')
Exemple #18
0
def estimate_gradient(f_h,
                      precision,
                      gradient_max=1,
                      n_measurements=50,
                      cxn=None):
    """Estimate the gradient using function evaluation at perturbation, h

    :param float f_h: Oracle output at perturbation h.
    :param int precision: Bit precision of gradient.
    :param int gradient_max: OOM estimate of largest gradient value
    :param int n_measurements: Number of times to measure system.
    :param Connection cxn: Connection to the QPU or QVM.
    :return: Decimal estimate of gradient.
    :rtype: float
    """

    # scale f_h by range of values gradient can take on
    f_h *= 1. / gradient_max

    # generate gradient program
    perturbation_sign = np.sign(f_h)
    p_gradient = gradient_program(f_h, precision)

    # run gradient program
    if cxn is None:
        from pyquil.api import QVMConnection
        cxn = QVMConnection()
    measured_qubits = list(range(precision + 1))
    measurements = cxn.run(p_gradient, measured_qubits, n_measurements)

    # summarize measurements
    bf_estimate = perturbation_sign * measurements_to_bf(measurements)
    bf_explicit = '{0:.16f}'.format(bf_estimate)
    deci_estimate = binary_to_real(bf_explicit)

    # rescale gradient
    deci_estimate *= gradient_max

    return deci_estimate
Exemple #19
0
def run_t2(qubit, filename):
    qvm = QVMConnection()
    model_info = get_model(filename)
    # noisy_p = Program(RX(math.pi / 2, qubit))
    noisy_p = Program("NOISY-RX-PLUS-90 " + str(qubit))
    noisy_p = Program(model_info) + noisy_p
    probabilities = []
    x = []
    delay_duration = 0.0 / NANO_SECOND_DENOMINATOR
    for t in range(NUM_STEPS):
        noisy_p_measured = noisy_p.copy()
        noisy_p_measured += Program(RZ(delay_duration * OMEGA_D, qubit))
        noisy_p_measured += Program("NOISY-RX-PLUS-90 " + str(qubit))
        noisy_p_measured = noisy_p_measured.measure_all()
        result = np.sum(qvm.run(noisy_p_measured, trials=NUM_TRIALS))
        # if (t % 10 == 0):
        #     print("T: {} Noisy Result: {}".format(t, result))
        probability = float(result) / NUM_TRIALS
        probabilities.append(probability)
        x.append(delay_duration)
        noisy_p += Program("NOISY-I " + str(qubit))
        delay_duration += 50.0 / NANO_SECOND_DENOMINATOR

    y_np = np.array(probabilities)
    x_np = np.array(x)
    plt.plot(x_np, y_np)
    opt, pcov = curve_fit(func_t2,
                          x_np,
                          y_np,
                          maxfev=1000000,
                          p0=guesses_T2[qubit])
    plt.plot(x_np, func_t2(x_np, *opt), 'r--')
    plt.show()
    a, k, o, c = opt
    print(opt)
    return 1.0 / k
Exemple #20
0

test_run_and_measure_empty = Program()

print(test_run_and_measure_empty)
result = qvm.run_and_measure(Program(), [0], 1)


test_run = Program(
    H(0),
    CNOT(0, 1)

)

print("test_run")
result = qvm.run(test_run, [0], 1)
print(result)


test_run_async = Program(
    H(0),
    CNOT(0, 1)

)

print("test_run_async")
result = qvm.run(test_run_async, [0], 1)
print(result)


test_run_and_measure = Program(
Exemple #21
0
    program = Program()
    ro = program.declare('ro', 'BIT', 2 * len(curImg_bits))

    #define agents
    alice = Alice(program, cmem=curImg_bits)
    bob = Bob(program)
    charlie = Charlie(program, qubits=qubitsUsed)
    eve = Eve(program)

    #connect agents
    QConnect(alice, bob, charlie, eve)

    #simulate agents
    Simulation(alice, charlie, bob,
               eve).run(trials=1, agent_classes=[Alice, Charlie, Bob, Eve])
    results = qvm.run(program)

    resultsBob.extend(results[0][0:len(curImg_bits)])
    resultsEve.extend(results[0][len(curImg_bits):])

    start = end
    if end == len(img_bits):
        break
    elif len(img_bits) >= end + 20:
        end += 20
    else:
        end = len(img_bits)
    i += 1
    print("simulated: ", i)

plot_images(resultsEve, resultsBob, img)
Exemple #22
0
#!/usr/bin/env python3
from pyquil.quil import Program
from pyquil.api import QVMConnection
from pyquil.gates import X, Z, H
from compile_for_pyquil import compiletoquil

# Q in binary
bitstring = '01010001'

# Do quantum stuff now we have our bit string
qvm = QVMConnection()
qprog = Program()

# do X on q1, q3, q7
# recall H Z H is X
qprog.inst(H(1), Z(1), H(1))
qprog.inst(X(3))
qprog.inst(X(7))

# do measurement over all 8 qubits
for i in range(0, 8):
    qprog.measure(i, i)

# store measurement outcomes
results = qvm.run(qprog)

# show info when compiled to 8 qubit AGAVE
compiletoquil(qprog)

print('# Result =', results[0])
Exemple #23
0
"""
test program
creates GHZ state with 10 qubits and sample 100 times
"""

from pyquil.quil import Program
from pyquil.api import QVMConnection, Job
from pyquil.gates import *
import pyquil.paulis as paulis

N_qubit = 10
N_sample = 100
qvm = QVMConnection()

p = Program(H(0))
for i in range(N_qubit - 1):
    p += Program(CNOT(i, i + 1))

print(qvm.wavefunction(p))

print(p)

classical_reg = [i for i in range(N_qubit)]
for i in range(N_qubit):
    p.measure(i, i)

result = qvm.run(p, classical_reg, trials=100)

for r in result:
    print(r)
## Adapted from Rigetti's documentation

# Program is the object that will contain our experiment
from pyquil.quil import Program 
# QVM 
from pyquil.api import QVMConnection 
from pyquil.gates import Z, H, CNOT, MEASURE 
# Instantiating a new qvm instance 
qvm = QVMConnection() 
# Our program p requires 2 qubits, labeled 0 & 1
p = Program(H(0), CNOT(0, 1), MEASURE(0, 0), MEASURE(1, 1)) 
results = qvm.run(p, classical_addresses=[0, 1], trials=10)

# Seeing the results is nice! 
# There are ten trials so this should return an array such that len(results) === 10.
print(results)
# [[1,1], [1,1], [1,1], [0,0], [1,1], [1,1], [1,1], [1,1], [1,1], [1,1]]

# There's also a wavefunction representation of the program from the qvm.
wavefunction = qvm.wavefunction(p)
print(wavefunction)
# (1+0j)|11>

## Large qubit count test
p30 = Program(
  Z(0), 
  Z(1),
  Z(2),
  Z(3),
  Z(4),
  Z(5),
from openfermion.utils import hermitian_conjugated
from forestopenfermion import qubitop_to_pyquilpauli, pyquilpauli_to_qubitop

from pyquil.quil import Program
from pyquil.gates import X
from pyquil.paulis import exponentiate
from pyquil.api import QVMConnection

hubbard_hamiltonian = FermionOperator()
spatial_orbitals = 4
for i in range(spatial_orbitals):
    electron_hop_alpha = FermionOperator(((2*i, 1), (2*((i+1) % spatial_orbitals), 0)))
    electron_hop_beta = FermionOperator(((2*i+1, 1), ((2 * ((i+1) % spatial_orbitals) + 1), 0)))
    hubbard_hamiltonian += -1 * (electron_hop_alpha + hermitian_conjugated(electron_hop_alpha))
    hubbard_hamiltonian += -1 * (electron_hop_beta + hermitian_conjugated(electron_hop_beta))
    hubbard_hamiltonian += FermionOperator(((2*i, 1), (2*i, 0), (2*i+1, 1), (2*i+1, 0)), 4.0)
hubbard_term_generator = jordan_wigner(hubbard_hamiltonian)
pyquil_hubbard_generator = qubitop_to_pyquilpauli(hubbard_term_generator)


localized_electrons_program = Program()
localized_electrons_program.inst([X(0), X(1)])
pyquil_program = Program()
for term in pyquil_hubbard_generator.terms:
    pyquil_program += exponentiate(0.1*term)
print (localized_electrons_program + pyquil_program)
qvm = QVMConnection()
print(qvm.run(pyquil_program, [0], 10))
wf = qvm.wavefunction(pyquil_program)
print(wf)
Exemple #26
0
from pyquil.quil import Program
from pyquil.api import QVMConnection
from pyquil.gates import H, PHASE

from pyquilcompiler import compiletoquil

import numpy as np
# Invoking and renaming
qvm = QVMConnection()
p = Program()
# Gate implementation
p.inst(H(0))
theta = np.pi / 2
p.inst(PHASE(theta, 0))

# Measurement
p.measure(0, 0)
p.measure(1, 1)
# Running the program

compiletoquil(p)

cr = []
results = qvm.run(p, cr, 4)
print(results)
Exemple #27
0
ORACLE_GATE_NAME = "GROVER_ORACLE"
gr_prog.defgate(ORACLE_GATE_NAME, oracle)

# Define inversion around the mean
DIFFUSION_GATE_NAME = "DIFFUSION"
diffusion = 2.0 * np.full((2**N, 2**N), 1/(2**N)) - np.eye(2**N)
gr_prog.defgate(DIFFUSION_GATE_NAME, diffusion)

# Number of algorithm iterations
N_ITER = int(np.pi / 4 * np.sqrt(2**N))

# Loop
for i in range(N_ITER):
    
    # \psi_2^i:  Apply Quantum Oracle
    gr_prog.inst(tuple([ORACLE_GATE_NAME] + qubits))
    #print(qvm.wavefunction(gr_prog))
    
    # \psi_3^i:  Apply Inversion around the mean
    gr_prog.inst(tuple([DIFFUSION_GATE_NAME] + qubits))
    #print(qvm.wavefunction(gr_prog))

# \psi_5: Measure
for q in qubits:
    gr_prog.measure(qubit_index=q, classical_reg=q)

# Run
ret = qvm.run(gr_prog, classical_addresses=qubits)
ret_string = ''.join([str(q) for q in ret[0]])
print("The searched string is: {}".format(ret_string))

p = Program()

# Prepare psi
p += H(2)
p += Z(2)
p += RZ(1.2, 2)
print("Initial Alice State: ")
printWF(p)

# Create Classical Memory
ro = p.declare('ro', 'BIT', 3)

# Create Alice, Bob, and Charlie. Give Alice qubit 2 (phi). Give Charlie qubits [0,1] (Bell State Pairs).
alice = Alice(p, qubits=[2], name='alice')
bob = Bob(p, name='bob')
charlie = Charlie(p, qubits=[0, 1], name='charlie')

# Connect agents to distribute qubits and report results
QConnect(alice, charlie, bob)
CConnect(alice, bob)

# Run simulation
Simulation(alice, bob, charlie).run(trials=1,
                                    agent_classes=[Alice, Bob, Charlie])
qvm = QVMConnection()
qvm.run(p)
print("Final Bob's State: ")
printWF(p)
Exemple #29
0
from pyquil.gates import X
from pyquil.quil import Program
from pyquil.api import QVMConnection

p = Program()

p.inst(X(0)).measure(0, 0)
print(p)

qvm = QVMConnection()

print(qvm.run(p, [0]))
Exemple #30
0
# 1. Calling Libraries
from pyquil.quil  import Program 
from pyquil.api   import QVMConnection 
from pyquil.gates import X, CCNOT

# 2. Initialising the program
qvm = QVMConnection()
p = Program()

# 3. Applying gates
p.inst(X(0),X(1),X(2)) # so here 111
p.inst(CCNOT(0,1,2)) 

# 4. Performing measurements
p.measure(0,0)
p.measure(1,1)
p.measure(2,2)

# 5. Executing the program
results = qvm.run(p, [], 4)
print(results)
Exemple #31
0

# prepares the state:
# |0> - |+> - |+> - |+> - |+>
# where - represents CZ entanglements and |1> and |+> are as usual
def prepareEntanglements():
    state_prep = Program().inst(I(0), H(1), H(2), H(3), H(4), CZ(0, 1),
                                CZ(1, 2), CZ(2, 3), CZ(3, 4))
    return state_prep


if __name__ == "__main__":
    qvm = QVMConnection()

    # wavefunction = qvm.wavefunction(state_prep)
    # print(wavefunction)

    trasportation = prepareEntanglements() + measureX(0) + measureX(
        1) + measureX(2) + measureX(3) + correctAndMeasure(4)

    print(trasportation)
    results = qvm.run(trasportation, [0, 1, 2, 3, 4], 10)
    print(results)

    # see if it all worked out
    for run in results:
        if run[4] == 1:
            print("Failed")
            quit(1)
    print("Okay cool, so it looks like it is working")