def detectWrap(a): t=time.time() i=a[0] imname=a[1] bbox=a[2] m=a[3] cfg=a[4] if cfg.show: img=util.myimread(imname) pylab.figure(10) pylab.ioff() pylab.clf() pylab.axis("off") pylab.imshow(img,interpolation="nearest",animated=True) if bbox!=None: gtbbox=[{"bbox":x} for x in bbox] else: gtbbox=None f=pyrHOG2.pyrHOG(imname,interv=10,savedir=cfg.savedir+"/hog/",notload=not(cfg.loadfeat),notsave=not(cfg.savefeat),hallucinate=cfg.hallucinate,cformat=True) res=pyrHOG2.detect(f,m,gtbbox,hallucinate=cfg.hallucinate,initr=cfg.initr,ratio=cfg.ratio,deform=cfg.deform,posovr=cfg.posovr,bottomup=cfg.bottomup,usemrf=cfg.usemrf,numneg=cfg.numneg,thr=cfg.thr,inclusion=cfg.inclusion,small=False,show=cfg.show,usefather=cfg.usefather,emptybb=True,useprior=cfg.useprior) if cfg.show: pylab.show() # raw_input() print "Detect Wrap:",time.time()-t return res
def detectWrap(a): i=a[0] imname=a[1] bbox=a[2] models=a[3] cfg=a[4] if cfg.show: img=util.myimread(imname) pylab.figure(10) pylab.ioff() pylab.clf() pylab.axis("off") pylab.imshow(img,interpolation="nearest",animated=True) if bbox!=None: gtbbox=[{"bbox":x,"img":imname.split("/")[-1]} for x in bbox] else: gtbbox=None notsave=False #if cfg.__dict__.has_key("test"): # notsave=cfg.test f=pyrHOG2.pyrHOG(imname,interv=10,savedir=cfg.auxdir+"/hog/",notsave=not(cfg.savefeat),notload=not(cfg.loadfeat),hallucinate=cfg.hallucinate,cformat=True) res=[] for clm,m in enumerate(models): res.append(pyrHOG2.detect(f,m,gtbbox,hallucinate=cfg.hallucinate,initr=cfg.initr,ratio=cfg.ratio,deform=cfg.deform,bottomup=cfg.bottomup,usemrf=cfg.usemrf,numneg=cfg.numneg,thr=cfg.thr,posovr=cfg.posovr,minnegincl=cfg.minnegincl,small=cfg.small,show=cfg.show,cl=clm,mythr=cfg.mythr,mpos=cfg.mpos,usefather=cfg.usefather,useprior=cfg.useprior,emptybb=False,K=cfg.k)) if cfg.show: pylab.show() return res
def detectWrap(a): i=a[0] imname=a[1] bbox=a[2] models=a[3] cfg=a[4] if cfg.show: img=util.myimread(imname) pylab.figure(10) pylab.ioff() pylab.clf() pylab.axis("off") pylab.imshow(img,interpolation="nearest",animated=True) if bbox!=None: gtbbox=[{"bbox":x} for x in bbox] else: gtbbox=None notsave=False #if cfg.__dict__.has_key("test"): # notsave=cfg.test f=pyrHOG2.pyrHOG(imname,interv=10,savedir=cfg.auxdir+"/hog/",notsave=not(cfg.savefeat),notload=not(cfg.loadfeat),hallucinate=cfg.hallucinate,cformat=True) res=[] for clm,m in enumerate(models): res.append(pyrHOG2.detect(f,m,gtbbox,hallucinate=cfg.hallucinate,initr=cfg.initr,ratio=cfg.ratio,deform=cfg.deform,bottomup=cfg.bottomup,usemrf=cfg.usemrf,numneg=cfg.numneg,thr=cfg.thr,posovr=cfg.posovr,minnegincl=cfg.minnegincl,small=cfg.small,show=cfg.show,cl=clm,mythr=cfg.mythr,mpos=cfg.mpos,usefather=cfg.usefather,useprior=cfg.useprior,K=cfg.k)) if cfg.show: pylab.show() return res
def detectWrap(a): t = time.time() i = a[0] imname = a[1] bbox = a[2] m = a[3] cfg = a[4] if cfg.show: img = util.myimread(imname) pylab.figure(10) pylab.ioff() pylab.clf() pylab.axis("off") pylab.imshow(img, interpolation="nearest", animated=True) if bbox != None: gtbbox = [{"bbox": x} for x in bbox] else: gtbbox = None img = util.myimread(imname, resize=RSZ) f = pyrHOG2.pyrHOG(img, interv=10, savedir=cfg.savedir + "/hog/", notload=not (cfg.loadfeat), notsave=not (cfg.savefeat), hallucinate=cfg.hallucinate, cformat=True) res = pyrHOG2.detect(f, m, gtbbox, hallucinate=cfg.hallucinate, initr=cfg.initr, ratio=cfg.ratio, deform=cfg.deform, posovr=cfg.posovr, bottomup=cfg.bottomup, usemrf=cfg.usemrf, numneg=cfg.numneg, thr=cfg.thr, inclusion=cfg.inclusion, small=cfg.small, show=cfg.show, usefather=cfg.usefather, useprior=cfg.useprior, nms=cfg.ovr, K=cfg.k) if cfg.show: pylab.show() # raw_input() print "Detect Wrap:", time.time() - t return res
def detectWrap(a): i = a[0] imname = a[1] bbox = a[2] models = a[3] cfg = a[4] if len(a) <= 5: imageflip = False else: imageflip = a[5] img = util.myimread(imname, resize=cfg.resize) if imageflip: img = util.myimread(imname, True, resize=cfg.resize) if bbox != None: bbox = util.flipBBox(img, bbox) if bbox != None: gtbbox = [{"bbox": x, "img": imname.split("/")[-1]} for x in bbox] else: gtbbox = None if cfg.show: img = util.myimread(imname, imageflip, resize=cfg.resize) pylab.figure(10) pylab.ioff() pylab.clf() pylab.axis("off") pylab.imshow(img, interpolation="nearest", animated=True) notsave = False #if cfg.__dict__.has_key("test"): # notsave=cfg.test #f=pyrHOG2.pyrHOG(imname,interv=10,savedir=cfg.auxdir+"/hog/",notsave=not(cfg.savefeat),notload=not(cfg.loadfeat),hallucinate=cfg.hallucinate,cformat=True,flip=imageflip,resize=cfg.resize) f = pyrHOG2.pyrHOG(img, interv=10, savedir=cfg.auxdir + "/hog/", notsave=not (cfg.savefeat), notload=not (cfg.loadfeat), hallucinate=cfg.hallucinate, cformat=True) #,flip=imageflip,resize=cfg.resize) res = [] for clm, m in enumerate(models): if cfg.useRL: res.append( pyrHOG2RL.detectflip(f, m, gtbbox, hallucinate=cfg.hallucinate, initr=cfg.initr, ratio=cfg.ratio, deform=cfg.deform, bottomup=cfg.bottomup, usemrf=cfg.usemrf, numneg=cfg.numneg, thr=cfg.thr, posovr=cfg.posovr, minnegincl=cfg.minnegincl, small=cfg.small, show=cfg.show, cl=clm, mythr=cfg.mythr, mpos=cfg.mpos, usefather=cfg.usefather, useprior=cfg.useprior, K=cfg.k)) else: res.append( pyrHOG2.detect(f, m, gtbbox, hallucinate=cfg.hallucinate, initr=cfg.initr, ratio=cfg.ratio, deform=cfg.deform, bottomup=cfg.bottomup, usemrf=cfg.usemrf, numneg=cfg.numneg, thr=cfg.thr, posovr=cfg.posovr, minnegincl=cfg.minnegincl, small=cfg.small, show=cfg.show, cl=clm, mythr=cfg.mythr, mpos=cfg.mpos, usefather=cfg.usefather, useprior=cfg.useprior, emptybb=False, K=cfg.k)) if cfg.show: pylab.draw() pylab.show() return res
import pylab #show the model if True: print "Show model" pylab.figure(100) pylab.clf() util2.drawModel(m["ww"]) pylab.draw() print "---- Image %s----"%imname print img=util2.myimread(imname) #compute the HOG pyramid f=pyrHOG2.pyrHOG(img,interv=10,savedir="",notload=True,notsave=True,hallucinate=True,cformat=True) print print "Complete search" showImage(img,title="Complete search") res=pyrHOG2.detect(f,m,bottomup=True,deform=True,usemrf=True,small=False,show=True) pylab.axis((0,img.shape[1],img.shape[0],0)) dettime1=res[2] numhog1=res[3] print "Number of computed HOGs:",numhog1 print print "Coarse-to-Fine search" import pylab showImage(img,title="Coarse-to-Fine") res=pyrHOG2.detect(f,m,bottomup=False,deform=True,usemrf=True,small=False,show=True) pylab.axis((0,img.shape[1],img.shape[0],0)) pylab.draw()