def __init__( self, spec: EnvSpec, feats: FeatureStack, init_param_kwargs: Optional[dict] = None, use_cuda: bool = False ): """ Constructor :param spec: specification of environment :param feats: list of feature functions :param init_param_kwargs: additional keyword arguments for the policy parameter initialization :param use_cuda: `True` to move the module to the GPU, `False` (default) to use the CPU """ if not isinstance(feats, FeatureStack): raise pyrado.TypeErr(given=feats, expected_type=FeatureStack) # Call Policy's constructor super().__init__(spec, use_cuda) self._feats = feats self.num_active_feat = feats.get_num_feat(spec.obs_space.flat_dim) self.net = nn.Linear(self.num_active_feat, spec.act_space.flat_dim, bias=False) # Call custom initialization function after PyTorch network parameter initialization init_param_kwargs = init_param_kwargs if init_param_kwargs is not None else dict() self.init_param(None, **init_param_kwargs) self.to(self.device)
def __init__(self, spec: EnvSpec, feats: FeatureStack, init_param_kwargs: dict = None, use_cuda: bool = False): """ Constructor :param spec: specification of environment :param feats: list of feature functions :param init_param_kwargs: additional keyword arguments for the policy parameter initialization """ super().__init__(spec, use_cuda) if not isinstance(feats, FeatureStack): raise pyrado.TypeErr(given=feats, expected_type=FeatureStack) # Store inputs self._num_act = spec.act_space.flat_dim self._num_obs = spec.obs_space.flat_dim self._feats = feats self.num_active_feat = feats.get_num_feat(self._num_obs) self.net = nn.Linear(self.num_active_feat, self._num_act, bias=False) # Call custom initialization function after PyTorch network parameter initialization init_param_kwargs = init_param_kwargs if init_param_kwargs is not None else dict( ) self.init_param(None, **init_param_kwargs) self.to(self.device)
def train_and_eval(trial: optuna.Trial, study_dir: str, seed: int): """ Objective function for the Optuna `Study` to maximize. .. note:: Optuna expects only the `trial` argument, thus we use `functools.partial` to sneak in custom arguments. :param trial: Optuna Trial object for hyper-parameter optimization :param study_dir: the parent directory for all trials in this study :param seed: seed value for the random number generators, pass `None` for no seeding :return: objective function value """ # Synchronize seeds between Optuna trials pyrado.set_seed(seed) # Environment env_hparams = dict(dt=1 / 250., max_steps=1500) env = QQubeSwingUpSim(**env_hparams) env = ActNormWrapper(env) # Policy policy_hparam = dict(feats=FeatureStack([ identity_feat, sign_feat, abs_feat, squared_feat, cubic_feat, ATan2Feat(1, 2), MultFeat([4, 5]) ])) policy = LinearPolicy(spec=env.spec, **policy_hparam) # Algorithm algo_hparam = dict( num_workers=1, # parallelize via optuna n_jobs max_iter=50, pop_size=trial.suggest_int('pop_size', 50, 200), num_rollouts=trial.suggest_int('num_rollouts', 4, 10), num_is_samples=trial.suggest_int('num_is_samples', 5, 40), expl_std_init=trial.suggest_uniform('expl_std_init', 0.1, 0.5), symm_sampling=trial.suggest_categorical('symm_sampling', [True, False]), ) csv_logger = create_csv_step_logger( osp.join(study_dir, f'trial_{trial.number}')) algo = PoWER(osp.join(study_dir, f'trial_{trial.number}'), env, policy, **algo_hparam, logger=csv_logger) # Train without saving the results algo.train(snapshot_mode='latest', seed=seed) # Evaluate min_rollouts = 1000 sampler = ParallelRolloutSampler( env, policy, num_workers=1, min_rollouts=min_rollouts) # parallelize via optuna n_jobs ros = sampler.sample() mean_ret = sum([r.undiscounted_return() for r in ros]) / min_rollouts return mean_ret
def create_nonrecurrent_policy(): return LinearPolicy( EnvSpec( BoxSpace(-1, 1, 4), BoxSpace(-1, 1, 3), ), FeatureStack(const_feat, identity_feat, squared_feat), )
def create_lin_setup(physicsEngine: str, dt: float, max_steps: int, checkJointLimits: bool): # Set up environment env = MiniGolfIKSim( usePhysicsNode=True, physicsEngine=physicsEngine, dt=dt, max_steps=max_steps, checkJointLimits=checkJointLimits, fixedInitState=True, ) # Set up policy policy = LinearPolicy(env.spec, FeatureStack([const_feat])) policy.param_values = to.tensor([0.6, 0.0, 0.03 ]) # X (abs), Y (rel), Z (abs), C (abs) return env, policy
def create_bob_setup(): # Environments env_hparams = dict(dt=1 / 100., max_steps=500) env_real = BallOnBeamSim(**env_hparams) env_real.domain_param = dict( # l_beam=1.95, # ang_offset=-0.03, g=10.81) env_sim = BallOnBeamSim(**env_hparams) randomizer = DomainRandomizer( # NormalDomainParam(name='l_beam', mean=0, std=1e-12, clip_lo=1.5, clip_up=3.5), # UniformDomainParam(name='ang_offset', mean=0, halfspan=1e-12), NormalDomainParam(name='g', mean=0, std=1e-12), ) env_sim = DomainRandWrapperLive(env_sim, randomizer) dp_map = { # 0: ('l_beam', 'mean'), 1: ('l_beam', 'std'), # 2: ('ang_offset', 'mean'), 3: ('ang_offset', 'halfspan') 0: ('g', 'mean'), 1: ('g', 'std') } env_sim = MetaDomainRandWrapper(env_sim, dp_map) # Policies (the behavioral policy needs to be deterministic) behavior_policy = LinearPolicy(env_sim.spec, feats=FeatureStack( [identity_feat, sin_feat])) behavior_policy.param_values = to.tensor( [3.8090, -3.8036, -1.0786, -2.4510, -0.9875, -1.3252, 3.1503, 1.4443]) prior = DomainRandomizer( # NormalDomainParam(name='l_beam', mean=2.05, std=2.05/10), # UniformDomainParam(name='ang_offset', mean=0.03, halfspan=0.03/10), NormalDomainParam(name='g', mean=8.81, std=8.81 / 10), ) # trafo_mask = [False, True, False, True] trafo_mask = [True, True] ddp_policy = DomainDistrParamPolicy(mapping=dp_map, trafo_mask=trafo_mask, prior=prior, scale_params=True) return env_sim, env_real, env_hparams, dp_map, behavior_policy, ddp_policy
ex_dir = setup_experiment(BallOnBeamSim.name, f"{REPS.name}_{LinearPolicy.name}") # Set seed if desired pyrado.set_seed(args.seed, verbose=True) # Environment env_hparams = dict(dt=1 / 100.0, max_steps=500) env = BallOnBeamSim(**env_hparams) env = ActNormWrapper(env) # Policy policy_hparam = dict( # feats=FeatureStack(RFFeat(env.obs_space.flat_dim, num_feat=1000, bandwidth=1/env.obs_space.bound_up)) # feats=FeatureStack(RBFFeat(num_feat_per_dim=20, bounds=env.obs_space.bounds, scale=0.8)), feats=FeatureStack(identity_feat, sin_feat)) policy = LinearPolicy(spec=env.spec, **policy_hparam) # Algorithm algo_hparam = dict( max_iter=500, eps=0.2, pop_size=10 * policy.num_param, num_init_states_per_domain=10, expl_std_init=0.2, expl_std_min=0.02, num_epoch_dual=1000, optim_mode="scipy", lr_dual=1e-3, use_map=True, num_workers=8,
from pyrado.policies.linear import LinearPolicy if __name__ == '__main__': # Experiment (set seed before creating the modules) ex_dir = setup_experiment(BallOnBeamSim.name, REPS.name, LinearPolicy.name, seed=1001) # Environment env_hparams = dict(dt=1/100., max_steps=500) env = BallOnBeamSim(**env_hparams) # Policy policy_hparam = dict( # feats=FeatureStack([RandFourierFeat(env.obs_space.flat_dim, num_feat=100, bandwidth=env.obs_space.bound_up)]) # feats=FeatureStack([RBFFeat(num_feat_per_dim=20, bounds=env.obs_space.bounds, scale=0.8)]), feats=FeatureStack([identity_feat, sin_feat]) ) policy = LinearPolicy(spec=env.spec, **policy_hparam) # Algorithm algo_hparam = dict( max_iter=200, eps=0.1, gamma=0.995, pop_size=20*policy.num_param, num_rollouts=10, expl_std_init=1.0, expl_std_min=0.02, num_epoch_dual=500, grad_free_optim=True, lr_dual=1e-4,
from pyrado.policies.linear import LinearPolicy from pyrado.spaces import BoxSpace from pyrado.utils.data_types import EnvSpec if __name__ == '__main__': # Define some arbitrary EnvSpec obs_space = BoxSpace(bound_lo=np.array([-5., -12.]), bound_up=np.array([10., 6.])) act_space = BoxSpace(bound_lo=np.array([-1.]), bound_up=np.array([1.])) spec = EnvSpec(obs_space, act_space) num_fpd = 5 num_eval_points = 500 policy_hparam = dict( feats=FeatureStack([RBFFeat(num_feat_per_dim=num_fpd, bounds=obs_space.bounds, scale=None)]) ) policy = LinearPolicy(spec, **policy_hparam) eval_grid_0 = to.linspace(-5., 10, num_eval_points) eval_grid_1 = to.linspace(-12., 6, num_eval_points) eval_grid = to.stack([eval_grid_0, eval_grid_1], dim=1) feat_vals = to.empty(num_eval_points, num_fpd*obs_space.flat_dim) # Feed evaluation samples one by one for i, obs in enumerate(eval_grid): feat_vals[i, :] = policy.eval_feats(obs) feat_vals_batch = policy.eval_feats(eval_grid) if (feat_vals == feat_vals_batch).all():
robotic environments powered by Rcs using either the Bullet or Vortex physics engine. None of the simulations includes any computer vision aspects. It is all about dynamics-based interaction and (continuous) control. The degree of randomization for the environments varies strongly, since it is a lot of work to randomize them properly (including testing) and I have to graduate after all ;) """ env_hparams = dict(dt=1 / 50.0, max_steps=300) env = BallOnBeamSim(**env_hparams) env = ActNormWrapper(env) """ Set up the policy after the environment since it needs to know the dimensions of the policies observation and action space. There are many different policy architectures available under `Pyrado/pyrado/policies`, which significantly vary in terms of required hyper-parameters. You can find some examples at `Pyrado/scripts/training`. Note that all policies must inherit from `Policy` which inherits from `torch.nn.Module`. Moreover, all `Policy` instances are deterministic. The exploration is handled separately (see `Pyrado/pyrado/exploration`). """ policy_hparam = dict(feats=FeatureStack(identity_feat, sin_feat)) policy = LinearPolicy(spec=env.spec, **policy_hparam) """ Specify the algorithm you want to use for learning the policy parameters. For deterministic sampling, you need to set `num_workers=1`. If `num_workers>1`, PyTorch's multiprocessing library will be used to parallelize sampling from the environment on the CPU. The resulting behavior is non-deterministic, i.e. even for the same random seed, you will get different results. Moreover, it is advised to set `num_workers` to 1 if you want to debug your code. The algorithms can be categorized in two different types: one type randomizes the action every step (their exploration strategy inherits from `StochasticActionExplStrat`), and the other type randomizes the policy parameters once every rollout their exploration strategy inherits from `StochasticParamExplStrat`). It goes without saying that every algorithm has different hyper-parameters. However, they all use the same `rollout()` function to generate their data. """ algo_hparam = dict( max_iter=8, pop_size=20,
args = get_argparser().parse_args() # Experiment (set seed before creating the modules) ex_dir = setup_experiment(OneMassOscillatorSim.name, f'{PEPG.name}_{LinearPolicy.name}') # Set seed if desired pyrado.set_seed(args.seed, verbose=True) # Environment env_hparams = dict(dt=1/50., max_steps=200) env = OneMassOscillatorSim(**env_hparams, task_args=dict(task_args=dict(state_des=np.array([0.5, 0])))) env = ActNormWrapper(env) # Policy policy_hparam = dict( feats=FeatureStack([const_feat, identity_feat]) ) policy = LinearPolicy(spec=env.spec, **policy_hparam) # Algorithm algo_hparam = dict( max_iter=100, num_rollouts=8, pop_size=60, expl_std_init=1.0, clip_ratio_std=0.05, normalize_update=False, transform_returns=True, lr=1e-2, num_workers=8, )
""" from tabulate import tabulate from pyrado.environment_wrappers.action_normalization import ActNormWrapper from pyrado.environments.pysim.ball_on_beam import BallOnBeamSim from pyrado.policies.features import FeatureStack, identity_feat, squared_feat from pyrado.policies.feed_back.linear import LinearPolicy from pyrado.sampling.parallel_rollout_sampler import ParallelRolloutSampler if __name__ == "__main__": # Set up environment env = BallOnBeamSim(dt=0.02, max_steps=500) env = ActNormWrapper(env) # Set up policy feats = FeatureStack(identity_feat, squared_feat) policy = LinearPolicy(env.spec, feats) # Set up sampler sampler = ParallelRolloutSampler(env, policy, num_workers=2, min_rollouts=2000) # Sample and print ros = sampler.sample() print( tabulate({ "StepSequence count": len(ros), "Step count": sum(map(len, ros)), }.items()))
# Experiment (set seed before creating the modules) ex_dir = setup_experiment(QCartPoleSwingUpSim.name, f'{REPS.name}_{LinearPolicy.name}') # Set seed if desired pyrado.set_seed(args.seed, verbose=True) # Environments env_hparams = dict(dt=1/250., max_steps=3000, long=False) env = QCartPoleSwingUpSim(**env_hparams) env = ActNormWrapper(env) # Policy policy_hparam = dict( # feats=FeatureStack([RandFourierFeat(env.obs_space.flat_dim, num_feat=20, bandwidth=env.obs_space.bound_up)]) feats=FeatureStack([const_feat, identity_feat, sign_feat, abs_feat, squared_feat, cubic_feat, ATan2Feat(1, 2), MultFeat([3, 4])]) ) policy = LinearPolicy(spec=env.spec, **policy_hparam) # Algorithm algo_hparam = dict( max_iter=500, eps=1.0, pop_size=20*policy.num_param, num_rollouts=4, expl_std_init=0.2, expl_std_min=0.02, use_map=True, optim_mode='scipy', num_workers=12, )
# Experiment (set seed before creating the modules) ex_dir = setup_experiment(OneMassOscillatorSim.name, f"{PEPG.name}_{LinearPolicy.name}") # Set seed if desired pyrado.set_seed(args.seed, verbose=True) # Environment env_hparams = dict(dt=1 / 50.0, max_steps=200) env = OneMassOscillatorSim(**env_hparams, task_args=dict(state_des=np.array([0.5, 0]))) env = ActNormWrapper(env) # Policy policy_hparam = dict(feats=FeatureStack(const_feat, identity_feat)) policy = LinearPolicy(spec=env.spec, **policy_hparam) # Algorithm algo_hparam = dict( max_iter=100, num_init_states_per_domain=8, pop_size=60, expl_std_init=1.0, clip_ratio_std=0.05, normalize_update=False, transform_returns=True, lr=1e-2, num_workers=8, ) algo = PEPG(ex_dir, env, policy, **algo_hparam)
def get_lin_ctrl(env: SimEnv, ctrl_type: str, ball_z_dim_mismatch: bool = True) -> LinearPolicy: """ Construct a linear controller specified by its controller gains. Parameters for BallOnPlate5DSim by Markus Lamprecht (clipped gains < 1e-5 to 0). :param env: environment :param ctrl_type: type of the controller: 'lqr', or 'h2' :param ball_z_dim_mismatch: only useful for BallOnPlate5DSim set to True if the given controller dos not have the z component (relative position) of the ball in the state vector, i.e. state is 14-dim instead of 16-dim :return: controller compatible with Pyrado Policy """ from pyrado.environments.rcspysim.ball_on_plate import BallOnPlate5DSim if isinstance(inner_env(env), BallOnPlate5DSim): # Get the controller gains (K-matrix) if ctrl_type.lower() == 'lqr': ctrl_gains = to.tensor([ [0.1401, 0, 0, 0, -0.09819, -0.1359, 0, 0.545, 0, 0, 0, -0.01417, -0.04427, 0], [0, 0.1381, 0, 0.2518, 0, 0, -0.2142, 0, 0.5371, 0, 0.03336, 0, 0, -0.1262], [0, 0, 0.1414, 0.0002534, 0, 0, -0.0002152, 0, 0, 0.5318, 0, 0, 0, -0.0001269], [0, -0.479, -0.0004812, 39.24, 0, 0, -15.44, 0, -1.988, -0.001934, 9.466, 0, 0, -13.14], [0.3039, 0, 0, 0, 25.13, 15.66, 0, 1.284, 0, 0, 0, 7.609, 6.296, 0] ]) elif ctrl_type.lower() == 'h2': ctrl_gains = to.tensor([ [-73.88, -2.318, 39.49, -4.270, 12.25, 0.9779, 0.2564, 35.11, 5.756, 0.8661, -0.9898, 1.421, 3.132, -0.01899], [-24.45, 0.7202, -10.58, 2.445, -0.6957, 2.1619, -0.3966, -61.66, -3.254, 5.356, 0.1908, 12.88, 6.142, -0.3812], [-101.8, -9.011, 64.345, -5.091, 17.83, -2.636, 0.9506, -44.28, 3.206, 37.59, 2.965, -32.65, -21.68, -0.1133], [-59.56, 1.56, -0.5794, 26.54, -2.503, 3.827, -7.534, 9.999, 1.143, -16.96, 8.450, -5.302, 4.620, -10.32], [-107.1, 0.4359, 19.03, -9.601, 20.33, 10.36, 0.2285, -74.98, -2.136, 7.084, -1.240, 62.62, 33.66, 1.790] ]) else: raise pyrado.ValueErr(given=ctrl_type, eq_constraint="'lqr' or 'h2'") # Compensate for the mismatching different state definition if ball_z_dim_mismatch: ctrl_gains = insert_tensor_col(ctrl_gains, 7, to.zeros((5, 1))) # ball z position ctrl_gains = insert_tensor_col(ctrl_gains, -1, to.zeros((5, 1))) # ball z velocity elif isinstance(inner_env(env), QBallBalancerSim): # Get the controller gains (K-matrix) if ctrl_type.lower() == 'pd': # Quanser gains (the original Quanser controller includes action clipping) ctrl_gains = -to.tensor([[-14., 0, -14*3.45, 0, 0, 0, -14*2.11, 0], [0, -14., 0, -14*3.45, 0, 0, 0, -14*2.11]]) elif ctrl_type.lower() == 'lqr': # Since the control module can by tricky to install (recommended using anaconda), we only load it if needed import control # System modeling A = np.zeros((env.obs_space.flat_dim, env.obs_space.flat_dim)) A[:env.obs_space.flat_dim//2, env.obs_space.flat_dim//2:] = np.eye(env.obs_space.flat_dim//2) A[4, 4] = -env.B_eq_v/env.J_eq A[5, 5] = -env.B_eq_v/env.J_eq A[6, 0] = env.c_kin*env.m_ball*env.g*env.r_ball**2/env.zeta A[6, 6] = -env.c_kin*env.r_ball**2/env.zeta A[7, 1] = env.c_kin*env.m_ball*env.g*env.r_ball**2/env.zeta A[7, 7] = -env.c_kin*env.r_ball**2/env.zeta B = np.zeros((env.obs_space.flat_dim, env.act_space.flat_dim)) B[4, 0] = env.A_m/env.J_eq B[5, 1] = env.A_m/env.J_eq # C = np.zeros((env.obs_space.flat_dim // 2, env.obs_space.flat_dim)) # C[:env.obs_space.flat_dim // 2, :env.obs_space.flat_dim // 2] = np.eye(env.obs_space.flat_dim // 2) # D = np.zeros((env.obs_space.flat_dim // 2, env.act_space.flat_dim)) # Get the weighting matrices from the environment Q = env.task.rew_fcn.Q R = env.task.rew_fcn.R # Q = np.diag([1e2, 1e2, 5e2, 5e2, 1e-2, 1e-2, 1e+1, 1e+1]) # Solve the continuous time Riccati eq K, _, _ = control.lqr(A, B, Q, R) # for discrete system pass dt ctrl_gains = to.from_numpy(K).to(to.get_default_dtype()) else: raise pyrado.ValueErr(given=ctrl_type, eq_constraint="'pd', 'lqr'") else: raise pyrado.TypeErr(given=inner_env(env), expected_type=BallOnPlate5DSim) # Reconstruct the controller feats = FeatureStack([identity_feat]) ctrl = LinearPolicy(env.spec, feats) ctrl.init_param(-1*ctrl_gains) # in classical control it is u = -K*x; here a = psi(s)*s return ctrl
def __init__(self, spec: EnvSpec, rbf_hparam: dict, dim_mask: int = 2, init_param_kwargs: dict = None, use_cuda: bool = False): """ Constructor :param spec: specification of environment :param rbf_hparam: hyper-parameters for the RBF-features, see `RBFFeat` :param dim_mask: number of RBF features to mask out at the beginning and the end of every dimension, pass 1 to remove the first and the last features for the policy, pass 0 to use all RBF features. Masking out RBFs makes sense if you want to obtain a smooth starting behavior. :param init_param_kwargs: additional keyword arguments for the policy parameter initialization :param use_cuda: `True` to move the policy to the GPU, `False` (default) to use the CPU """ if not spec.act_space.flat_dim % 2 == 0: raise pyrado.ShapeErr( msg= "DualRBFLinearPolicy only works with an even number of actions, since we are using the time " "derivative of the features to create the second half of the outputs. This is done to use " "forward() in order to obtain the joint position and the joint velocities. Check the action space " "of the environment if the second halt of the actions space are velocities!" ) if not (0 <= dim_mask <= rbf_hparam["num_feat_per_dim"] // 2): raise pyrado.ValueErr( given=dim_mask, ge_constraint="0", le_constraint=f"{rbf_hparam['num_feat_per_dim']//2}") # Construct the RBF features self._feats = RBFFeat(**rbf_hparam) # Call LinearPolicy's constructor (custom parts will be overridden later) super().__init__(spec, FeatureStack(self._feats), init_param_kwargs, use_cuda) # Override custom parts self._feats = RBFFeat(**rbf_hparam) self.dim_mask = dim_mask if self.dim_mask > 0: self.num_active_feat = self._feats.num_feat - 2 * self.dim_mask * spec.obs_space.flat_dim else: self.num_active_feat = self._feats.num_feat self.net = nn.Linear(self.num_active_feat, self.env_spec.act_space.flat_dim // 2, bias=False) # Create mask to deactivate first and last feature of every input dimension self.feats_mask = to.ones(self._feats.centers.shape, dtype=to.bool) self.feats_mask[:self.dim_mask, :] = False self.feats_mask[-self.dim_mask:, :] = False self.feats_mask = self.feats_mask.t().reshape( -1) # reshape the same way as in RBFFeat # Call custom initialization function after PyTorch network parameter initialization init_param_kwargs = init_param_kwargs if init_param_kwargs is not None else dict( ) self.init_param(None, **init_param_kwargs) self.to(self.device)
ex_dir = setup_experiment(QBallBalancerSim.name, f'{SPOTA.name}-{HCNormal.name}', f'{LinearPolicy.name}_obsnoise-s_actedlay-10', seed=1001) # Environment and domain randomization env_hparams = dict(dt=1/100., max_steps=500) env = QBallBalancerSim(**env_hparams) env = GaussianObsNoiseWrapper(env, noise_std=[1/180*pi, 1/180*pi, 0.005, 0.005, # [rad, rad, m, m, ... 10/180*pi, 10/180*pi, 0.05, 0.05]) # ... rad/s, rad/s, m/s, m/s] # env = ObsPartialWrapper(env, mask=[0, 0, 0, 0, 1, 1, 0, 0]) env = ActDelayWrapper(env) randomizer = get_default_randomizer(env) randomizer.add_domain_params(UniformDomainParam(name='act_delay', mean=5, halfspan=5, clip_lo=0, roundint=True)) env = DomainRandWrapperBuffer(env, randomizer) # Policy policy_hparam = dict(feats=FeatureStack([identity_feat])) policy = LinearPolicy(spec=env.spec, **policy_hparam) # Initialize with Quanser's PD gains init_policy_param_values = to.tensor([[-14., 0, -14*3.45, 0, 0, 0, -14*2.11, 0], [0, -14., 0, -14*3.45, 0, 0, 0, -14*2.11]]) # Algorithm subrtn_hparam_cand = dict( max_iter=100, num_rollouts=0, # will be overwritten by SPOTA pop_size=50, expl_factor=1.1, expl_std_init=0.5, ) subrtn_hparam_cand = subrtn_hparam_cand
len_rollouts=env_sim.max_steps, # recurrent_network_type=nn.RNN, # only_last_output=True, # hidden_size=20, # num_recurrent_layers=1, # output_size=1, ) embedding = create_embedding(DeltaStepsEmbedding.name, env_sim.spec, **embedding_hparam) # Posterior (normalizing flow) posterior_hparam = dict(model="maf", hidden_features=20, num_transforms=4) # Policy policy_hparam = dict( feats=FeatureStack(const_feat, identity_feat, sign_feat, squared_feat, MultFeat((0, 2)), MultFeat((1, 2)))) policy = LinearPolicy(spec=env_sim.spec, **policy_hparam) # Policy optimization subroutine subrtn_policy_hparam = dict( max_iter=5, pop_size=5 * policy.num_param, num_domains=20, num_init_states_per_domain=1, expl_factor=1.05, expl_std_init=1.0, num_workers=args.num_workers, ) subrtn_policy = HCNormal(ex_dir, env_sim, policy, **subrtn_policy_hparam) # Algorithm