Exemple #1
0
    def test_time_series_unit(self):
        """
        Checks that the code works the same as the calculated example
        """
        imaster = asarray([1, 1, 2, 2, 3, 3, 4, 5])
        islave = asarray([2, 4, 3, 4, 5, 6, 6, 6])
        timeseries = asarray([0.0, 0.1, 0.6, 0.8, 1.1, 1.3])
        phase = asarray([0.5, 4, 2.5, 3.5, 2.5, 3.5, 2.5, 1])
        nan_fraction = asarray([0.5, 0.4, 0.2, 0.3, 0.1, 0.3, 0.2, 0.1])

        now = date.today()

        dates = [now + timedelta(days=(t * 365.25)) for t in timeseries]
        dates.sort()
        master = [dates[m_num - 1] for m_num in imaster]
        slave = [dates[s_num - 1] for s_num in islave]

        self.ifgs = [
            SinglePixelIfg(m, s, p, n)
            for m, s, p, n in zip(master, slave, phase, nan_fraction)
        ]

        tsincr, tscum, tsvel = time_series(self.ifgs,
                                           params=self.params,
                                           vcmt=self.vcmt,
                                           mst=None)
        expected = asarray([[[0.50, 3.0, 4.0, 5.5, 6.5]]])
        assert_array_almost_equal(tscum, expected, decimal=2)
Exemple #2
0
def timeseries_calc(ifg_paths, params, vcmt, tiles, preread_ifgs):
    """
    Time series calculation.

    :param ifg_paths: List of interferogram paths
    :param params: Parameters dictionary corresponding to config file
    :param vcmt: vcmt array
    :param tiles: List of all tiles used during MPI processes
    :param preread_ifgs: Dictionary containing interferogram characteristics for efficient computing

    :return xxxx
    """
    process_tiles = mpiops.array_split(tiles)
    log.info('Calculating time series')
    output_dir = params[cf.TMPDIR]
    for t in process_tiles:
        log.info('Calculating time series for tile {}'.format(t.index))
        ifg_parts = [shared.IfgPart(p, t, preread_ifgs) for p in ifg_paths]
        mst_tile = np.load(
            os.path.join(output_dir, 'mst_mat_{}.npy'.format(t.index)))
        res = timeseries.time_series(ifg_parts, params, vcmt, mst_tile)
        tsincr, tscum, _ = res
        np.save(file=os.path.join(output_dir, 'tsincr_{}.npy'.format(t.index)),
                arr=tsincr)
        np.save(file=os.path.join(output_dir, 'tscuml_{}.npy'.format(t.index)),
                arr=tscum)
    mpiops.comm.barrier()
Exemple #3
0
def _timeseries_calc(ifg_paths, params, vcmt, tiles, preread_ifgs):
    """
    MPI wrapper for time series calculation.
    """
    if params[cf.TIME_SERIES_CAL] == 0:
        log.info('Time Series Calculation not required')
        return

    if params[cf.TIME_SERIES_METHOD] == 1:
        log.info('Calculating time series using Laplacian Smoothing method')
    elif params[cf.TIME_SERIES_METHOD] == 2:
        log.info('Calculating time series using SVD method')

    output_dir = params[cf.TMPDIR]
    process_tiles = mpiops.array_split(tiles)
    for t in process_tiles:
        log.info('Calculating time series for tile {}'.format(t.index))
        ifg_parts = [shared.IfgPart(p, t, preread_ifgs) for p in ifg_paths]
        mst_tile = np.load(os.path.join(output_dir,
                                        'mst_mat_{}.npy'.format(t.index)))
        res = timeseries.time_series(ifg_parts, params, vcmt, mst_tile)
        tsincr, tscum, _ = res
        np.save(file=os.path.join(output_dir, 'tsincr_{}.npy'.format(t.index)),
                arr=tsincr)
        np.save(file=os.path.join(output_dir, 'tscuml_{}.npy'.format(t.index)),
                arr=tscum)
    mpiops.comm.barrier()
Exemple #4
0
def _calc_svd_time_series(ifg_paths, params, preread_ifgs, tiles):
    """
    Helper function to obtain time series for spatio-temporal filter
    using SVD method
    """
    # Is there other existing functions that can perform this same job?
    log.info('Calculating time series via SVD method for '
             'spatio-temporal filter')
    # copy params temporarily
    new_params = deepcopy(params)
    new_params[cf.TIME_SERIES_METHOD] = 2  # use SVD method

    process_tiles = mpiops.array_split(tiles)
    output_dir = params[cf.TMPDIR]

    nvels = None
    for t in process_tiles:
        log.info('Calculating time series for tile {} during aps '
                 'correction'.format(t.index))
        ifg_parts = [shared.IfgPart(p, t, preread_ifgs) for p in ifg_paths]
        mst_tile = np.load(
            os.path.join(output_dir, 'mst_mat_{}.npy'.format(t.index)))
        tsincr = time_series(ifg_parts, new_params, vcmt=None, mst=mst_tile)[0]
        np.save(file=os.path.join(output_dir,
                                  'tsincr_aps_{}.npy'.format(t.index)),
                arr=tsincr)
        nvels = tsincr.shape[2]

    nvels = mpiops.comm.bcast(nvels, root=0)
    # need to assemble tsincr from all processes
    tsincr_g = mpiops.run_once(_assemble_tsincr, ifg_paths, params,
                               preread_ifgs, tiles, nvels)
    log.info('Finished calculating time series for spatio-temporal filter')
    return tsincr_g
Exemple #5
0
def calculate_time_series(ifgs, params, vcmt, mst):
    res = timeseries.time_series(ifgs, params, vcmt, mst)
    for r in res:
        if len(r.shape) != 3:
            raise timeseries.TimeSeriesError

    tsincr, tscum, tsvel = res
    return tsincr, tscum, tsvel