Exemple #1
0
    def __call__(self,
                 vertices,
                 camera_pose,
                 image,
                 color=(0.8, 0.3, 0.3, 1.0)):
        material = pyrender.MetallicRoughnessMaterial(metallicFactor=0.2,
                                                      alphaMode='OPAQUE',
                                                      baseColorFactor=color)

        mesh = trimesh.Trimesh(vertices, self.faces)

        # Rotate mesh 180 deg around x (pyrender coordinate frame)
        rot = trimesh.transformations.rotation_matrix(np.radians(180),
                                                      [1, 0, 0])
        mesh.apply_transform(rot)
        mesh = pyrender.Mesh.from_trimesh(mesh, material=material)

        # Rotate trafo 180 deg around x (pyrender coordinate frame)
        Rx = np.array(
            [[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]],
            dtype=float)
        camera_pose = np.dot(camera_pose, Rx)

        scene = pyrender.Scene(ambient_light=(0.5, 0.5, 0.5))
        scene.add(mesh, 'mesh')

        camera = pyrender.IntrinsicsCamera(fx=self.focal_length[0],
                                           fy=self.focal_length[1],
                                           cx=self.camera_center[0],
                                           cy=self.camera_center[1])
        scene.add(camera, pose=camera_pose)

        light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=1)
        light_pose = np.eye(4)

        light_pose[:3, 3] = np.array([0, -1, 1])
        scene.add(light, pose=light_pose)

        light_pose[:3, 3] = np.array([0, 1, 1])
        scene.add(light, pose=light_pose)

        light_pose[:3, 3] = np.array([1, 1, 2])
        scene.add(light, pose=light_pose)

        color, rend_depth = self.renderer.render(
            scene, flags=pyrender.RenderFlags.RGBA)
        valid_mask = (rend_depth > 0)[:, :, None]
        output_img = (color[:, :, :3] * valid_mask +
                      (1 - valid_mask) * image).astype(np.uint8)
        return output_img
Exemple #2
0
def render_glcam(K,
                 Rt,
                 model_in, # model name or trimesh
                 scale=1.0,
                 std_size=(1000, 1000),
                 flat_shading=False):
    
    # Mesh creation
    if isinstance(model_in, str) is True:
        mesh = trimesh.load(model_in)
    else:
        mesh = model_in.copy()
    pr_mesh = pyrender.Mesh.from_trimesh(mesh)

    # Scene creation
    scene = pyrender.Scene()

    # Adding objects to the scene
    face_node = scene.add(pr_mesh)

    # Caculate fx fy cx cy from K
    fx, fy = K[0][0] * scale, K[1][1] * scale
    cx, cy = K[0][2] * scale, K[1][2] * scale

    # Camera Creation
    cam = pyrender.IntrinsicsCamera(fx, fy, cx, cy, 
                                    znear=0.1, zfar=100000)
    cam_pose = np.eye(4)
    cam_pose[:3, :3] = Rt[:3, :3].T
    cam_pose[:3, 3] = -Rt[:3, :3].T.dot(Rt[:, 3])
    scene.add(cam, pose=cam_pose)

    # Set up the light
    light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=10.0)
    scene.add(light, pose=cam_pose)

    # Rendering offscreen from that camera
    r = pyrender.OffscreenRenderer(viewport_width=std_size[1],
                                   viewport_height=std_size[0],
                                   point_size=1.0)
    if flat_shading is True:
        color, depth = r.render(scene, flags=pyrender.constants.RenderFlags.FLAT)
    else:
        color, depth = r.render(scene)

    # rgb to bgr for cv2
    color = color[:, :, [2, 1, 0]]

    return depth, color
Exemple #3
0
    def __call__(self, vertices, camera_translation, image):
        material = pyrender.MetallicRoughnessMaterial(
            metallicFactor=0.0,
            alphaMode='OPAQUE',
            smooth=False,
            wireframe=True,
            roughnessFactor=1.0,
            emissiveFactor=(0.1, 0.1, 0.1),
            baseColorFactor=(1.0, 1.0, 0.9, 1.0))

        camera_translation[0] *= -1.

        mesh = trimesh.Trimesh(vertices, self.faces)
        rot = trimesh.transformations.rotation_matrix(np.radians(180),
                                                      [1, 0, 0])
        mesh.apply_transform(rot)

        mesh = pyrender.Mesh.from_trimesh(mesh,
                                          material=material,
                                          smooth=False)
        scene = pyrender.Scene(ambient_light=(0.30, 0.30, 0.30))
        scene.add(mesh, 'mesh')

        camera_pose = np.eye(4)
        camera_pose[:3, 3] = camera_translation
        camera = pyrender.IntrinsicsCamera(fx=self.focal_length,
                                           fy=self.focal_length,
                                           cx=self.camera_center[0],
                                           cy=self.camera_center[1])
        scene.add(camera, pose=camera_pose)

        light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=0.8)
        light_pose = np.eye(4)

        light_pose[:3, 3] = np.array([0, -1, 1])
        scene.add(light, pose=light_pose)

        light_pose[:3, 3] = np.array([0, 1, 1])
        scene.add(light, pose=light_pose)

        light_pose[:3, 3] = np.array([1, 1, 2])
        scene.add(light, pose=light_pose)

        color, rend_depth = self.renderer.render(
            scene, flags=pyrender.RenderFlags.RGBA)
        color = color.astype(np.float32) / 255.0
        valid_mask = (rend_depth > 0)[:, :, None]
        output_img = (color[:, :, :3] * valid_mask + (1 - valid_mask) * image)
        return output_img
Exemple #4
0
def face_rendering(mesh, camera_pose, light_poses, show=True):
    """
    Render face RGBD images with input camera pose and lighting
    :param mesh: Trimesh object
    :param camera_pose: Twc, np.array 4x4
    :param light_poses: list of light poses, Twc, list[np.array 4x4]
    :param show: whether show rendered image
    :return:
    """
    mesh = pyrender.Mesh.from_trimesh(mesh)
    scene = pyrender.Scene()
    scene.add(mesh)

    # Set up the camera -- z-axis away from the scene, x-axis right, y-axis up
    camera = pyrender.PerspectiveCamera(yfov=np.pi / 10.0)
    scene.add(camera, pose=camera_pose)

    # Set up the light
    for light_pose in light_poses:
        light = pyrender.DirectionalLight(color=np.ones(3), intensity=10.0)
        light_pose = rotation_matrix(angle=0.0, direction=[0.0, 1.0, 0.0])
        scene.add(light, pose=light_pose)

    # Render the scene
    r = pyrender.OffscreenRenderer(960, 1280)
    color, depth = r.render(scene)
    # depth[depth < 1e-5] = 0.75

    # Show the images
    if show:
        img_list = [{'img': color, 'title': 'RGB'},
                    {'img': depth, 'title': 'Depth'}]
        show_multiple_img(img_list, num_cols=2)

    # print(depth[480, 640])
    r.delete()

    # Compute camera pose Twc
    Twc = camera_pose
    T = np.array([
        [1.0, 0.0, 0.0, 0.0],
        [0.0, -1.0, 0.0, 0.0],
        [0.0, 0.0, -1.0, 0.0],
        [0.0, 0.0, 0.0, 1.0],
    ])
    Twc = np.dot(T, np.dot(Twc, T))

    return color, depth, K_from_PerspectiveCamera(camera, 1280, 960), Twc
Exemple #5
0
def simple_face_rendering(obj_file_path, show=True):
    mesh = load_mesh_from_obj(obj_file_path)
    mesh = pyrender.Mesh.from_trimesh(mesh)
    scene = pyrender.Scene()
    scene.add(mesh)

    # Set up the camera -- z-axis away from the scene, x-axis right, y-axis up
    camera = pyrender.PerspectiveCamera(yfov=np.pi / 10.0)
    camera_pose = np.array([
        [1.0, 0.0, 0.0, 0.0],
        [0.0, 1.0, 0.0, 0.0],
        [0.0, 0.0, 1.0, 1.0],#/300],
        [0.0, 0.0, 0.0, 1.0],
    ])
    # camera_pose = rotation_matrix(angle=np.pi / 4.0, direction=[0.0, 1.0, 0.0])
    # camera_pose[0, 3] = camera_pose[2, 3] = np.sqrt(2) / 2
    scene.add(camera, pose=camera_pose)

    # Set up the light -- a single spot light in the same spot as the camera
    light = pyrender.DirectionalLight(color=np.ones(3), intensity=10.0)
    light_pose = rotation_matrix(angle=0.0, direction=[0.0, 1.0, 0.0])
    scene.add(light, pose=light_pose)

    # Render the scene
    r = pyrender.OffscreenRenderer(960, 1280)
    color, depth = r.render(scene)
    # depth[depth < 1e-5] = 0.75

    # Show the images
    if show:
        img_list = [{'img': color, 'title': 'RGB'},
                    {'img': depth, 'title': 'Depth'}]
        show_multiple_img(img_list, num_cols=2)

    # print(depth[480, 640])
    r.delete()

    # Compute camera pose Twc
    Twc = camera_pose
    T = np.array([
        [1.0, 0.0, 0.0, 0.0],
        [0.0, -1.0, 0.0, 0.0],
        [0.0, 0.0, -1.0, 0.0],
        [0.0, 0.0, 0.0, 1.0],
    ])
    Twc = np.dot(T, np.dot(Twc, T))

    return color, depth, K_from_PerspectiveCamera(camera, 1280, 960), Twc
Exemple #6
0
    def _instantiate_pyrender_scene(self):
        self._scene = pyrender.Scene()
        self._renderer = pyrender.OffscreenRenderer(self.image_size[0],
                                                    self.image_size[1])

        light = pyrender.DirectionalLight(color=np.ones(3), intensity=1.0)
        cam = pyrender.IntrinsicsCamera(
            fx=self.focal_length[0],
            fy=self.focal_length[0],
            cx=self.image_size[0] / 2,
            cy=self.image_size[1] / 2,
            zfar=100000000000000  # `Infinite` clipping
        )

        self._light_obj = self._scene.add(light)
        self._cam_obj = self._scene.add(cam)
Exemple #7
0
 def __init__(self, img_size, bg_color=None):
     if bg_color is None:
         bg_color = np.array([0.1, 0.1, 0.1, 1.])
     self.scene = pyrender.Scene(bg_color=bg_color)
     self.focal_len = 5.
     camera = pyrender.PerspectiveCamera(
         yfov=np.tan(1 / self.focal_len) * 2, aspectRatio=1.0)
     camera_pose = np.eye(4, dtype=np.float32)
     self.scene.add(camera, pose=camera_pose)
     light = pyrender.DirectionalLight(
         color=np.ones(3),
         intensity=10.0,
     )
     self.scene.add(light, pose=camera_pose)
     if not hasattr(img_size, '__iter__'):
         img_size = [img_size, img_size]
     self.r = pyrender.OffscreenRenderer(*img_size)
Exemple #8
0
def render_face_orthographic(mesh, background=None):
    """
    mesh location should be normalized
    :param mesh:
    :param background:
    :return:
    """
    mesh.visual.face_colors = np.array([0.05, 0.1, 0.2, 1])

    mesh = pyrender.Mesh.from_trimesh(mesh, smooth=False)
    # mesh = pyrender.Mesh.from_trimesh(mesh)

    scene.add(mesh, pose=np.eye(4))
    camera_pose = np.eye(4)
    # camera_pose[0, 3] = 1
    # camera_pose[1, 3] = 1
    # camera_pose[2, 3] = -10
    # camera_pose[0, 0] = 1
    # camera_pose[1, 1] = -1
    # camera_pose[2, 2] = -1
    #
    # camera = pyrender.OrthographicCamera(xmag=1, ymag=1, zfar=100)
    camera_pose[0, 3] = 1
    camera_pose[1, 3] = 1
    camera_pose[2, 3] = 10
    camera_pose[0, 0] = 1
    camera_pose[1, 1] = 1
    camera_pose[2, 2] = 1

    camera = pyrender.OrthographicCamera(xmag=1, ymag=1, zfar=100)
    scene.add(camera, pose=camera_pose)
    light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=5.0)
    scene.add(light, pose=camera_pose)
    color, depth = r.render(scene)
    scene.clear()

    # print(color.shape)
    color = np.array(color)
    color = color[::-1]
    if background is not None:
        new_color = np.array(background)
        new_color[color != 255] = color[color != 255]
        color = new_color
    return color
def renderLight(posmap, init_image=None, is_render=True):
    tex = np.ones((256, 256, 3)) / 2
    mesh = UVmap2Mesh(posmap, tex, is_extra_triangle=False)
    vertices = mesh['vertices']
    triangles = mesh['triangles']
    colors = mesh['colors'] / np.max(mesh['colors'])
    file = 'tmp/light/test.obj'
    write_obj_with_colors(file, vertices, triangles, colors)

    obj = trimesh.load(file)
    # obj.visual.vertex_colors = np.random.uniform(size=obj.vertices.shape)
    obj.visual.face_colors = np.array([0.05, 0.1, 0.2])

    mesh = pyrender.Mesh.from_trimesh(obj, smooth=False)

    scene.add(mesh, pose=np.eye(4))

    camera_pose = np.eye(4)
    camera_pose[0, 3] = 128
    camera_pose[1, 3] = 128
    camera_pose[2, 3] = 300
    camera = pyrender.OrthographicCamera(xmag=128, ymag=128, zfar=1000)

    scene.add(camera, pose=camera_pose)
    light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=8.0)
    scene.add(light, pose=camera_pose)
    color, depth = r.render(scene)
    if is_render:
        plt.imshow(color)
        plt.show()

    if init_image is not None:
        sum_mask = np.mean(color, axis=-1)
        fuse_img = color.copy()
        fuse_img[sum_mask > 128] = init_image[sum_mask > 128]
        if is_render:
            plt.imshow(fuse_img)
            plt.show()
        scene.clear()
        return fuse_img

    scene.clear()
    return color
Exemple #10
0
    def __init__(self,
                 skeleton_name,
                 mode='key',
                 camera_pose=None,
                 camera_intrin='1280_720_color',
                 suppress_warnings=False):

        super().__init__(skeleton_name)
        intrin = makeIntrinsics(camera_intrin)

        self.mode = mode
        self.suppress_warnings = suppress_warnings

        ml = MeshLoader()
        ml.load()
        name_list = ml.getNames()
        self.meshes = ml.getMeshes()

        if camera_pose is not None:
            c_pose = camera_pose
        else:
            c_pose = [.087, -1.425, .4, 0, 1.551, -.025]

        self.scene = pyrender.Scene(bg_color=[0.0, 0.0, 0.0])  # Make scene

        camera = cameraFromIntrinsics(intrin)
        cam_pose = makePose(*c_pose)
        self.camera_node = self.scene.add(camera, pose=cam_pose)

        dl = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=10.0)
        self.scene.add(
            dl, parent_node=self.camera_node)  # Add light at camera pose

        # Add in joints
        self.joint_nodes = []
        for mesh, name in zip(self.meshes, name_list):
            self.joint_nodes.append(pyrender.Node(name=name, mesh=mesh))
        for node in self.joint_nodes:
            self.scene.add_node(node)
        self._updateKeypoints()
        self.rend = pyrender.OffscreenRenderer(intrin.width, intrin.height)
        self.node_color_map = {}
        self.setMode(mode)
def render_mesh(img, mesh, face, cam_param):
    # mesh
    mesh = trimesh.Trimesh(mesh, face)
    rot = trimesh.transformations.rotation_matrix(np.radians(180), [1, 0, 0])
    mesh.apply_transform(rot)
    material = pyrender.MetallicRoughnessMaterial(metallicFactor=0.0,
                                                  alphaMode='OPAQUE',
                                                  baseColorFactor=(1.0, 1.0,
                                                                   0.9, 1.0))
    mesh = pyrender.Mesh.from_trimesh(mesh, material=material, smooth=False)
    scene = pyrender.Scene(ambient_light=(0.3, 0.3, 0.3))
    scene.add(mesh, 'mesh')

    focal, princpt = cam_param['focal'], cam_param['princpt']
    camera = pyrender.IntrinsicsCamera(fx=focal[0],
                                       fy=focal[1],
                                       cx=princpt[0],
                                       cy=princpt[1])
    scene.add(camera)

    # renderer
    renderer = pyrender.OffscreenRenderer(viewport_width=img.shape[1],
                                          viewport_height=img.shape[0],
                                          point_size=1.0)

    # light
    light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=0.8)
    light_pose = np.eye(4)
    light_pose[:3, 3] = np.array([0, -1, 1])
    scene.add(light, pose=light_pose)
    light_pose[:3, 3] = np.array([0, 1, 1])
    scene.add(light, pose=light_pose)
    light_pose[:3, 3] = np.array([1, 1, 2])
    scene.add(light, pose=light_pose)

    # render
    rgb, depth = renderer.render(scene, flags=pyrender.RenderFlags.RGBA)
    rgb = rgb[:, :, :3].astype(np.float32)
    valid_mask = (depth > 0)[:, :, None]

    # save to image
    img = rgb * valid_mask + img * (1 - valid_mask)
    return img
def setup_standard_scene(camera):
    """
    Creates an empty scene with some standard lighting and the given camera.

    Parameters
    ----------
        camera:
            pyrender camera that should be used for rendering

    Returns
    -------
        an empty scene with lighting and camera set up.
    """

    directional_light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=2.0)
    scene = pyrender.Scene()
    scene.add(camera)
    scene.add(directional_light)
    return scene
Exemple #13
0
def render_mesh(model):
    dist = 2
    angle = 20
    height = -0.2
    scene = pyrender.Scene(ambient_light=[.1, .1, .3], bg_color=(0, 0, 0))
    scene.add(pyrender.Mesh.from_trimesh(model, smooth=False))
    light = pyrender.DirectionalLight(color=[1, 1, 1], intensity=2e3)
    scene.add(light, pose=np.eye(4))
    c = np.cos(angle * np.pi / 180)
    s = np.sin(angle * np.pi / 180)
    camera_pose = np.array([[c, 0, s, dist * s], [0, 1, 0, height],
                            [-1 * s, 0, c, dist * c], [0, 0, 0, 1]])
    camera = pyrender.PerspectiveCamera(yfov=np.pi / 3.0, znear=0.5, zfar=5)
    scene.add(camera, pose=camera_pose)

    renderer = pyrender.OffscreenRenderer(512, 512)
    color, _ = renderer.render(scene)

    return color[:, :, ::-1]
Exemple #14
0
    def export_3d_image(self, filename="3d_render.png", tolerance=0.005):
        """Creates a 3D rendered image (png) of the reactor

        :param filename: output filename of the image created
        :type filename: [ParamType](, optional)
        :param tolerance: the mesh tolerance
        :type tolerance: float

        :return: filename of the created image
        :rtype: str
        """

        scene = pyrender.Scene(ambient_light=np.array([0.1, 0.1, 0.1, 1.0]))
        for entry in self.shapes_and_components:
            if entry.render_mesh is None:
                scene.add(entry._create_render_mesh(tolerance))

        # sets the field of view (fov) and the aspect ratio of the image
        camera = pyrender.camera.PerspectiveCamera(yfov=math.radians(90.0),
                                                   aspectRatio=2.0)

        # sets the position of the camera using a matrix
        c = 2**-0.5
        camera_pose = np.array([[1, 0, 0, 0], [0, c, -c, -500], [0, c, c, 500],
                                [0, 0, 0, 1]])
        scene.add(camera, pose=camera_pose)

        # adds some basic lighting to the scene
        light = pyrender.DirectionalLight(color=np.ones(3), intensity=1.0)
        scene.add(light, pose=camera_pose)

        # Render the scene
        renderer = pyrender.OffscreenRenderer(1000, 500)
        colours, depth = renderer.render(scene)

        image = Image.fromarray(colours, "RGB")

        Path(filename).parent.mkdir(parents=True, exist_ok=True)
        image.save(filename, "PNG")
        print("\n saved 3d image to ", filename)

        return filename
Exemple #15
0
def save_image_face_heatmap(facedata, vec, errors, id, name="face_heat", path=""):
    plt.clf()
    plt.close()
    colors_heat = []

    # Map errors to RGB colors
    min_error = 0
    max_error = 6
    for i, er in enumerate(errors[id]):
        c_er = abs(er)
        if c_er > max_error:
            c_er = max_error
        c = rgb(min_error, max_error, c_er)
        colors_heat.append(c)

    # Generate colored mesh
    predict_trimeshh = facedata.vec2meshTrimesh2(vec, col=colors_heat)
    trimeshh = pyrender.Mesh.from_trimesh(predict_trimeshh, smooth=False)

    # Create scene for rendering, etc.
    scene = pyrender.Scene(ambient_light=[.1, .1, .3], bg_color=[255, 255, 255])
    camera = pyrender.PerspectiveCamera(yfov=np.pi / 3.0)
    light = pyrender.DirectionalLight(color=[1, 1, 1], intensity=2e3)
    scene.add(trimeshh, pose=np.eye(4))
    scene.add(light, pose=np.eye(4))

    # non chiedermi mai come ho trovato questi valori bellissimi (T/N: just use these values)
    camera_pose = np.array([
        [0.94063, 0.01737, -0.41513, -88.15790],
        [-0.06728, 0.98841, -0.16663, -35.36127],
        [0.33266, 0.15078, 1.14014, 241.71166],
        [0.00000, 0.00000, 0.00000, 1.00000]
    ])
    scene.add(camera, pose=camera_pose)
    r = pyrender.OffscreenRenderer(512, 512)
    color, _ = r.render(scene)
    plt.figure(figsize=(8, 8))
    plt.imshow(color)
    name_image = path+name+str(".png")
    # plt.colorbar()  # Could be a nice addition, however unneeded
    plt.savefig(name_image)
    plt.clf()
    def __init__(self):
        """Construct a Scene."""
        super().__init__()
        self._bullet_nodes = {}
        self._seg_node_map = {}
        self.bg_color = (0.7, 0.7, 0.8)
        self.ambient_light = (0.2, 0.2, 0.2)

        self._camera_node = pyr.Node(camera=pyr.PerspectiveCamera(
            np.deg2rad(60.0)),
                                     translation=(0.0, -2.0, 3.0),
                                     rotation=(-0.472, 0.0, 0.0, 0.882))
        self.add_node(self._camera_node)

        self._light_node = pyr.Node(light=pyr.DirectionalLight(color=(0.8, 0.8,
                                                                      0.8),
                                                               intensity=5.0),
                                    translation=(-0.8, -0.2, 2.0),
                                    rotation=(-0.438, 0.342, -0.511, 0.655))
        self.add_node(self._light_node)
Exemple #17
0
def test2():
    model_path = 'data/models/basic/cow.obj'

    # load the cow model
    tm = trimesh.load(model_path)
    tm.visual.vertex_colors = np.random.uniform(
        size=tm.visual.vertex_colors.shape)
    tm.visual.face_colors = np.random.uniform(size=tm.visual.face_colors.shape)
    mesh = pyrender.Mesh.from_trimesh(tm, smooth=False)

    light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=2.0)
    cam = pyrender.PerspectiveCamera(yfov=np.pi / 3.0, aspectRatio=1.414)
    nm = pyrender.Node(mesh=mesh, matrix=np.eye(4))
    nl = pyrender.Node(light=light, matrix=np.eye(4))
    nc = pyrender.Node(camera=cam, matrix=np.eye(4))
    scene = pyrender.Scene(ambient_light=[1.0, 1.0, 1.0], bg_color=gray)
    scene.add_node(nm)
    scene.add_node(nl, parent_node=nm)
    scene.add_node(nc, parent_node=nm)
    pyrender.Viewer(scene, use_raymond_lighting=True)
def _add_lighting(scene, light_type, random_range=(1, 4)):
    '''Takes scene and adds random amout of lighting.
    random_range:   Range to pick number of lights from.'''
    n = random.randrange(  # Number of lights
        random_range[0], random_range[1])

    for _ in range(n):  # Add directional lights
        d = None
        if 'directional_lights' == light_type:
            d = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=2)
        elif 'point_lights' == light_type:
            d = pyrender.PointLight(color=[1.0, 1.0, 1.0], intensity=2)
        else:
            raise Exception(
                'Light type not recognized, should be \"direction_lights\" or \"point_lights\", not {}'
                .format(light_type))

        _add_model(scene, d)

    return scene
Exemple #19
0
    def __call__(self, vertices, faces):
        material = pyrender.MetallicRoughnessMaterial(
            metallicFactor=0.2,
            alphaMode='OPAQUE',
            baseColorFactor=(0.8, 0.3, 0.3, 1.0))

        camera_translation = np.array([0.0, 0.0, 50.0])

        mesh = trimesh.Trimesh(vertices[0], faces[0], process=False)
        # rot = trimesh.transformations.rotation_matrix(
        #     np.radians(180), [1, 0, 0])
        # mesh.apply_transform(rot)
        mesh = pyrender.Mesh.from_trimesh(mesh, material=material)

        scene = pyrender.Scene(ambient_light=(0.5, 0.5, 0.5))
        scene.add(mesh, 'mesh')

        camera_pose = np.eye(4)
        camera_pose[:3, 3] = camera_translation
        camera = pyrender.IntrinsicsCamera(fx=self.focal_length,
                                           fy=self.focal_length,
                                           cx=self.camera_center[0],
                                           cy=self.camera_center[1])
        scene.add(camera, pose=camera_pose)

        light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=1)
        light_pose = np.eye(4)

        light_pose[:3, 3] = np.array([0, -1, 1])
        scene.add(light, pose=light_pose)

        light_pose[:3, 3] = np.array([0, 1, 1])
        scene.add(light, pose=light_pose)

        light_pose[:3, 3] = np.array([1, 1, 2])
        scene.add(light, pose=light_pose)

        color, rend_depth = self.renderer.render(
            scene, flags=pyrender.RenderFlags.RGBA)
        color = color.astype(np.float32) / 255.0
        return torch.from_numpy(color).float().unsqueeze(0)
    def img_renderer(img, mesh, light_est):

        # compose scene
        scene = pyrender.Scene(ambient_light=[.1, .1, .3], bg_color=[0, 0, 0])
        camera = pyrender.PerspectiveCamera(yfov=np.pi / 3.0)
        light = pyrender.DirectionalLight(color=[1, 1, 1], intensity=2e3)

        scene.add(mesh, pose=np.eye(4))
        scene.add(light_est, pose=np.eye(4))

        # c = 2**-0.5
        # scene.add(camera, pose=[[ 1,  0,  0,  0],
        #                [ 0,  c, -c, -2],
        #                [ 0,  c,  c,  2],
        #                [ 0,  0,  0,  1]])

        # render scene
        r = pyrender.OffscreenRenderer(512, 512)
        color, _ = r.render(scene)

        plt.figure(figsize=(8, 8)), plt.imshow(color)
Exemple #21
0
def render_example():
    # generate mesh
    sphere = trimesh.creation.icosphere(subdivisions=4, radius=0.8)
    sphere.vertices += 1e-2 * np.random.randn(*sphere.vertices.shape)
    mesh = pyrender.Mesh.from_trimesh(sphere, smooth=False)

    # compose scene
    scene = pyrender.Scene(ambient_light=[.1, .1, .3], bg_color=[0, 0, 0])
    camera = pyrender.PerspectiveCamera(yfov=np.pi / 3.0)
    light = pyrender.DirectionalLight(color=[1, 1, 1], intensity=2e3)

    scene.add(mesh, pose=np.eye(4))
    scene.add(light, pose=np.eye(4))

    c = 2**-0.5
    scene.add(camera,
              pose=[[1, 0, 0, 0], [0, c, -c, -2], [0, c, c, 2], [0, 0, 0, 1]])

    # render scene
    r = pyrender.OffscreenRenderer(512, 512)
    color, _ = r.render(scene)

    plt.figure(figsize=(8, 8)), plt.imshow(color)
Exemple #22
0
    def render_multiview(self, vertices, K, R, T, imglist, trackId=0, return_depth=False, return_color=False,
        bg_color=[0.0, 0.0, 0.0, 0.0], camera=None):
        # List to store rendered scenes
        output_images, output_colors, output_depths = [], [], []
        # Need to flip x-axis
        rot = trimesh.transformations.rotation_matrix(
            np.radians(180), [1, 0, 0])
        nViews = len(imglist)
        for nv in range(nViews):
            img = imglist[nv]
            self.renderer.viewport_height = img.shape[0]
            self.renderer.viewport_width = img.shape[1]
            # Create a scene for each image and render all meshes
            scene = pyrender.Scene(bg_color=bg_color,
                                   ambient_light=(0.3, 0.3, 0.3))
            camera_pose = np.eye(4)

            # for every person in the scene
            if isinstance(vertices, dict):
                for trackId, data in vertices.items():
                    vert = data['vertices'].copy()
                    faces = data['faces']
                    col = data.get('col', trackId)
                    vert = vert @ R[nv].T + T[nv]
                    mesh = trimesh.Trimesh(vert, faces)
                    mesh.apply_transform(rot)
                    trans = [0, 0, 0]

                    material = pyrender.MetallicRoughnessMaterial(
                        metallicFactor=0.0,
                        alphaMode='OPAQUE',
                        baseColorFactor=colors[col % len(colors)])
                    mesh = pyrender.Mesh.from_trimesh(
                        mesh,
                        material=material)
                    scene.add(mesh, 'mesh')
            else:
                verts = vertices @ R[nv].T + T[nv]
                mesh = trimesh.Trimesh(verts, self.faces)
                mesh.apply_transform(rot)
                trans = [0, 0, 0]

                material = pyrender.MetallicRoughnessMaterial(
                    metallicFactor=0.0,
                    alphaMode='OPAQUE',
                    baseColorFactor=colors[trackId % len(colors)])
                mesh = pyrender.Mesh.from_trimesh(
                    mesh,
                    material=material)
                scene.add(mesh, 'mesh')

            if camera is not None:
                light = pyrender.PointLight(color=[1.0, 1.0, 1.0], intensity=70)
                light_pose = np.eye(4)
                light_pose[:3, 3] = [0, 0, 4.5]
                scene.add(light, pose=light_pose)

                light_pose[:3, 3] = [0, 1, 4]
                scene.add(light, pose=light_pose)

                light_pose[:3, 3] = [0, -1, 4]
                scene.add(light, pose=light_pose)
            else:
                trans = [0, 0, 0]
                # Use 3 directional lights
                # Create light source
                light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=1)
                light_pose = np.eye(4)
                light_pose[:3, 3] = np.array([0, -1, 1]) + trans
                scene.add(light, pose=light_pose)
                light_pose[:3, 3] = np.array([0, 1, 1]) + trans
                scene.add(light, pose=light_pose)
                light_pose[:3, 3] = np.array([1, 1, 2]) + trans
                scene.add(light, pose=light_pose)
            if camera is None:
                if K is None:
                    camera_center = np.array([img.shape[1] / 2., img.shape[0] / 2.])
                    camera = pyrender.camera.IntrinsicsCamera(fx=self.focal_length, fy=self.focal_length, cx=camera_center[0], cy=camera_center[1])
                else:
                    camera = pyrender.camera.IntrinsicsCamera(fx=K[nv][0, 0], fy=K[nv][1, 1], cx=K[nv][0, 2], cy=K[nv][1, 2])
            scene.add(camera, pose=camera_pose)
            # Alpha channel was not working previously need to check again
            # Until this is fixed use hack with depth image to get the opacity
            color, rend_depth = self.renderer.render(scene, flags=flags)
            # color = color[::-1,::-1]
            # rend_depth = rend_depth[::-1,::-1]
            output_depths.append(rend_depth)
            color = color.astype(np.uint8)
            valid_mask = (rend_depth > 0)[:, :, None]
            if color.shape[2] == 3: # 在服务器上透明通道失败
                color = np.dstack((color, (valid_mask*255).astype(np.uint8)))
            output_colors.append(color)
            output_img = (color[:, :, :3] * valid_mask +
                          (1 - valid_mask) * img)
            
            output_img = output_img.astype(np.uint8)
            output_images.append(output_img)
        if return_depth:
            return output_images, output_depths
        elif return_color:
            return output_colors
        else:
            return output_images
Exemple #23
0
    def __call__(self, images, vertices, translation):
        # List to store rendered scenes
        output_images = []
        # Need to flip x-axis
        rot = trimesh.transformations.rotation_matrix(np.radians(180),
                                                      [1, 0, 0])
        # For all iamges

        for i in range(len(images)):
            img = images[i].cpu().numpy().transpose(1, 2, 0)
            self.renderer.viewport_height = img.shape[0]
            self.renderer.viewport_width = img.shape[1]
            verts = vertices[i].detach().cpu().numpy()
            mesh_trans = translation[i].cpu().numpy()
            verts = verts + mesh_trans[:, None, ]
            num_people = verts.shape[0]

            # Create a scene for each image and render all meshes
            scene = pyrender.Scene(bg_color=[0.0, 0.0, 0.0, 0.0],
                                   ambient_light=(0.5, 0.5, 0.5))

            # Create camera. Camera will always be at [0,0,0]
            # CHECK If I need to swap x and y
            camera_center = np.array([img.shape[1] / 2., img.shape[0] / 2.])
            camera_pose = np.eye(4)

            camera = pyrender.camera.IntrinsicsCamera(fx=self.focal_length,
                                                      fy=self.focal_length,
                                                      cx=camera_center[0],
                                                      cy=camera_center[1])
            scene.add(camera, pose=camera_pose)
            # Create light source
            light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0],
                                              intensity=1)
            # for every person in the scene
            for n in range(num_people):
                mesh = trimesh.Trimesh(verts[n], self.faces)
                mesh.apply_transform(rot)
                trans = 0 * mesh_trans[n]
                trans[0] *= -1
                trans[2] *= -1
                material = pyrender.MetallicRoughnessMaterial(
                    metallicFactor=0.2,
                    alphaMode='OPAQUE',
                    baseColorFactor=colors[n % len(colors)])
                mesh = pyrender.Mesh.from_trimesh(mesh, material=material)
                scene.add(mesh, 'mesh')

                # Use 3 directional lights
                light_pose = np.eye(4)
                light_pose[:3, 3] = np.array([0, -1, 1]) + trans
                scene.add(light, pose=light_pose)
                light_pose[:3, 3] = np.array([0, 1, 1]) + trans
                scene.add(light, pose=light_pose)
                light_pose[:3, 3] = np.array([1, 1, 2]) + trans
                scene.add(light, pose=light_pose)
            # Alpha channel was not working previously need to check again
            # Until this is fixed use hack with depth image to get the opacity
            color, rend_depth = self.renderer.render(
                scene, flags=pyrender.RenderFlags.RGBA)
            # color = color[::-1,::-1]
            # rend_depth = rend_depth[::-1,::-1]
            color = color.astype(np.float32) / 255.0
            valid_mask = (rend_depth > 0)[:, :, None]
            output_img = (color[:, :, :3] * valid_mask +
                          (1 - valid_mask) * img)
            output_img = np.transpose(output_img, (2, 0, 1))
            output_images.append(output_img)

        return output_images
Exemple #24
0
 for meantheta in np.linspace(mintheta, maxtheta, anglesteps):
     for meanphi in np.linspace(minphi, maxphi, anglesteps):
         theta = meantheta + np.random.uniform(
             -(maxtheta - mintheta) / anglesteps / 2,
             (maxtheta - mintheta) / anglesteps / 2)
         phi = meanphi + np.random.uniform(
             -(maxphi - minphi) / anglesteps / 2,
             (maxphi - minphi) / anglesteps / 2)
         dist = meandist + np.random.uniform(
             -(maxdist - mindist) / diststeps / 2,
             (maxdist - mindist) / diststeps / 2)
         scene = pyrender.Scene(ambient_light=[.1, .1, .3],
                                bg_color=[1, 1, 1])
         camera = pyrender.PerspectiveCamera(yfov=np.pi / 3.0)
         intensity = 10**np.random.uniform(3, 3.5)
         light = pyrender.DirectionalLight(color=[1, 1, 1],
                                           intensity=intensity)
         scene.add(mesh, pose=np.eye(4))
         x = np.random.uniform(0, 5)
         y = np.random.uniform(0, 5)
         z = np.random.uniform(0, 5)
         scene.add(light,
                   pose=[[1, 0, 0, x], [0, 1, 0, y], [0, 0, 1, z],
                         [0, 0, 0, 1]])
         ct = np.cos(theta)
         st = np.sin(theta)
         cp = np.cos(phi)
         sp = np.sin(phi)
         hor_rotation = np.array([[ct, 0, st, 0], [0, 1, 0, 0],
                                  [-st, 0, ct, 0], [0, 0, 0, 1]])
         vert_rotation = np.array([[1, 0, 0, 0], [0, cp, -sp, 0],
                                   [0, sp, cp, 0], [0, 0, 0, 1]])
Exemple #25
0
def render_orthcam(
        model_in,  # model name or trimesh
        xy_mag,
        rend_size,
        flat_shading=False,
        zfar=10000,
        znear=0.05):

    # Mesh creation
    if isinstance(model_in, str) is True:
        mesh = trimesh.load(model_in, process=False)
    else:
        mesh = model_in.copy()
    pr_mesh = pyrender.Mesh.from_trimesh(mesh)

    # Scene creation
    scene = pyrender.Scene()

    # Adding objects to the scene
    face_node = scene.add(pr_mesh)

    # Camera Creation
    if type(xy_mag) == float:
        cam = pyrender.OrthographicCamera(xmag=xy_mag,
                                          ymag=xy_mag,
                                          znear=znear,
                                          zfar=zfar)
    elif type(xy_mag) == tuple:
        cam = pyrender.OrthographicCamera(xmag=xy_mag[0],
                                          ymag=xy_mag[1],
                                          znear=znear,
                                          zfar=zfar)
    else:
        print("Error: xy_mag should be float or tuple")
        return False

    scene.add(cam, pose=np.eye(4))

    # Set up the light
    light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=10.0)
    scene.add(light, pose=np.eye(4))

    # Rendering offscreen from that camera
    r = pyrender.OffscreenRenderer(viewport_width=rend_size[1],
                                   viewport_height=rend_size[0],
                                   point_size=1.0)
    if flat_shading is True:
        color, depth = r.render(scene,
                                flags=pyrender.constants.RenderFlags.FLAT)
    else:
        color, depth = r.render(scene)

    # rgb to bgr for cv2
    color = color[:, :, [2, 1, 0]]

    # fix pyrender BUG of depth rendering, pyrender version: 0.1.43
    depth[depth != 0] = (zfar + znear - (
        (2.0 * znear * zfar) / depth[depth != 0])) / (zfar - znear)
    depth[depth != 0] = ((depth[depth != 0] + (zfar + znear) /
                          (zfar - znear)) * (zfar - znear)) / 2.0

    return depth, color
Exemple #26
0
                         dtype=np.float32).reshape(2)
        princpt = np.array(cam_param['princpt'][cam_idx],
                           dtype=np.float32).reshape(2)
        camera = pyrender.IntrinsicsCamera(fx=focal[0],
                                           fy=focal[1],
                                           cx=princpt[0],
                                           cy=princpt[1])
        scene.add(camera)

        # renderer
        renderer = pyrender.OffscreenRenderer(viewport_width=img_width,
                                              viewport_height=img_height,
                                              point_size=1.0)

        # light
        light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=0.8)
        light_pose = np.eye(4)
        light_pose[:3, 3] = np.array([0, -1, 1])
        scene.add(light, pose=light_pose)
        light_pose[:3, 3] = np.array([0, 1, 1])
        scene.add(light, pose=light_pose)
        light_pose[:3, 3] = np.array([1, 1, 2])
        scene.add(light, pose=light_pose)

        # render
        rgb, depth = renderer.render(scene, flags=pyrender.RenderFlags.RGBA)
        rgb = rgb[:, :, :3].astype(np.float32)
        depth = depth[:, :, None]
        valid_mask = (depth > 0)
        if prev_depth is None:
            render_mask = valid_mask
def fit_single_frame(
        img,
        keypoints,
        init_trans,
        scan,
        scene_name,
        body_model,
        camera,
        joint_weights,
        body_pose_prior,
        jaw_prior,
        left_hand_prior,
        right_hand_prior,
        shape_prior,
        expr_prior,
        angle_prior,
        result_fn='out.pkl',
        mesh_fn='out.obj',
        body_scene_rendering_fn='body_scene.png',
        out_img_fn='overlay.png',
        loss_type='smplify',
        use_cuda=True,
        init_joints_idxs=(9, 12, 2, 5),
        use_face=True,
        use_hands=True,
        data_weights=None,
        body_pose_prior_weights=None,
        hand_pose_prior_weights=None,
        jaw_pose_prior_weights=None,
        shape_weights=None,
        expr_weights=None,
        hand_joints_weights=None,
        face_joints_weights=None,
        depth_loss_weight=1e2,
        interpenetration=True,
        coll_loss_weights=None,
        df_cone_height=0.5,
        penalize_outside=True,
        max_collisions=8,
        point2plane=False,
        part_segm_fn='',
        focal_length_x=5000.,
        focal_length_y=5000.,
        side_view_thsh=25.,
        rho=100,
        vposer_latent_dim=32,
        vposer_ckpt='',
        use_joints_conf=False,
        interactive=True,
        visualize=False,
        save_meshes=True,
        degrees=None,
        batch_size=1,
        dtype=torch.float32,
        ign_part_pairs=None,
        left_shoulder_idx=2,
        right_shoulder_idx=5,
        ####################
        ### PROX
        render_results=True,
        camera_mode='moving',
        ## Depth
        s2m=False,
        s2m_weights=None,
        m2s=False,
        m2s_weights=None,
        rho_s2m=1,
        rho_m2s=1,
        init_mode=None,
        trans_opt_stages=None,
        viz_mode='mv',
        #penetration
        sdf_penetration=False,
        sdf_penetration_weights=0.0,
        sdf_dir=None,
        cam2world_dir=None,
        #contact
        contact=False,
        rho_contact=1.0,
        contact_loss_weights=None,
        contact_angle=15,
        contact_body_parts=None,
        body_segments_dir=None,
        load_scene=False,
        scene_dir=None,
        **kwargs):
    assert batch_size == 1, 'PyTorch L-BFGS only supports batch_size == 1'
    body_model.reset_params()
    body_model.transl.requires_grad = True

    device = torch.device('cuda') if use_cuda else torch.device('cpu')

    if visualize:
        pil_img.fromarray((img * 255).astype(np.uint8)).show()

    if degrees is None:
        degrees = [0, 90, 180, 270]

    if data_weights is None:
        data_weights = [
            1,
        ] * 5

    if body_pose_prior_weights is None:
        body_pose_prior_weights = [4.04 * 1e2, 4.04 * 1e2, 57.4, 4.78]

    msg = ('Number of Body pose prior weights {}'.format(
        len(body_pose_prior_weights)) +
           ' does not match the number of data term weights {}'.format(
               len(data_weights)))
    assert (len(data_weights) == len(body_pose_prior_weights)), msg

    if use_hands:
        if hand_pose_prior_weights is None:
            hand_pose_prior_weights = [1e2, 5 * 1e1, 1e1, .5 * 1e1]
        msg = ('Number of Body pose prior weights does not match the' +
               ' number of hand pose prior weights')
        assert (
            len(hand_pose_prior_weights) == len(body_pose_prior_weights)), msg
        if hand_joints_weights is None:
            hand_joints_weights = [0.0, 0.0, 0.0, 1.0]
            msg = ('Number of Body pose prior weights does not match the' +
                   ' number of hand joint distance weights')
            assert (
                len(hand_joints_weights) == len(body_pose_prior_weights)), msg

    if shape_weights is None:
        shape_weights = [1e2, 5 * 1e1, 1e1, .5 * 1e1]
    msg = ('Number of Body pose prior weights = {} does not match the' +
           ' number of Shape prior weights = {}')
    assert (len(shape_weights) == len(body_pose_prior_weights)), msg.format(
        len(shape_weights), len(body_pose_prior_weights))

    if use_face:
        if jaw_pose_prior_weights is None:
            jaw_pose_prior_weights = [[x] * 3 for x in shape_weights]
        else:
            jaw_pose_prior_weights = map(lambda x: map(float, x.split(',')),
                                         jaw_pose_prior_weights)
            jaw_pose_prior_weights = [list(w) for w in jaw_pose_prior_weights]
        msg = ('Number of Body pose prior weights does not match the' +
               ' number of jaw pose prior weights')
        assert (
            len(jaw_pose_prior_weights) == len(body_pose_prior_weights)), msg

        if expr_weights is None:
            expr_weights = [1e2, 5 * 1e1, 1e1, .5 * 1e1]
        msg = ('Number of Body pose prior weights = {} does not match the' +
               ' number of Expression prior weights = {}')
        assert (len(expr_weights) == len(body_pose_prior_weights)), msg.format(
            len(body_pose_prior_weights), len(expr_weights))

        if face_joints_weights is None:
            face_joints_weights = [0.0, 0.0, 0.0, 1.0]
        msg = ('Number of Body pose prior weights does not match the' +
               ' number of face joint distance weights')
        assert (len(face_joints_weights) == len(body_pose_prior_weights)), msg

    if coll_loss_weights is None:
        coll_loss_weights = [0.0] * len(body_pose_prior_weights)
    msg = ('Number of Body pose prior weights does not match the' +
           ' number of collision loss weights')
    assert (len(coll_loss_weights) == len(body_pose_prior_weights)), msg

    use_vposer = kwargs.get('use_vposer', True)
    vposer, pose_embedding = [
        None,
    ] * 2
    if use_vposer:
        pose_embedding = torch.zeros([batch_size, 32],
                                     dtype=dtype,
                                     device=device,
                                     requires_grad=True)

        vposer_ckpt = osp.expandvars(vposer_ckpt)
        vposer, _ = load_vposer(vposer_ckpt, vp_model='snapshot')
        vposer = vposer.to(device=device)
        vposer.eval()

    if use_vposer:
        body_mean_pose = torch.zeros([batch_size, vposer_latent_dim],
                                     dtype=dtype)
    else:
        body_mean_pose = body_pose_prior.get_mean().detach().cpu()

    keypoint_data = torch.tensor(keypoints, dtype=dtype)
    gt_joints = keypoint_data[:, :, :2]
    if use_joints_conf:
        joints_conf = keypoint_data[:, :, 2].reshape(1, -1)

    # Transfer the data to the correct device
    gt_joints = gt_joints.to(device=device, dtype=dtype)
    if use_joints_conf:
        joints_conf = joints_conf.to(device=device, dtype=dtype)

    scan_tensor = None
    if scan is not None:
        scan_tensor = torch.tensor(scan.get('points'),
                                   device=device,
                                   dtype=dtype).unsqueeze(0)

    # load pre-computed signed distance field
    sdf = None
    sdf_normals = None
    grid_min = None
    grid_max = None
    voxel_size = None
    if sdf_penetration:
        with open(osp.join(sdf_dir, scene_name + '.json'), 'r') as f:
            sdf_data = json.load(f)
            grid_min = torch.tensor(np.array(sdf_data['min']),
                                    dtype=dtype,
                                    device=device)
            grid_max = torch.tensor(np.array(sdf_data['max']),
                                    dtype=dtype,
                                    device=device)
            grid_dim = sdf_data['dim']
        voxel_size = (grid_max - grid_min) / grid_dim
        sdf = np.load(osp.join(sdf_dir, scene_name + '_sdf.npy')).reshape(
            grid_dim, grid_dim, grid_dim)
        sdf = torch.tensor(sdf, dtype=dtype, device=device)
        if osp.exists(osp.join(sdf_dir, scene_name + '_normals.npy')):
            sdf_normals = np.load(
                osp.join(sdf_dir, scene_name + '_normals.npy')).reshape(
                    grid_dim, grid_dim, grid_dim, 3)
            sdf_normals = torch.tensor(sdf_normals, dtype=dtype, device=device)
        else:
            print("Normals not found...")

    with open(os.path.join(cam2world_dir, scene_name + '.json'), 'r') as f:
        cam2world = np.array(json.load(f))
        R = torch.tensor(cam2world[:3, :3].reshape(3, 3),
                         dtype=dtype,
                         device=device)
        t = torch.tensor(cam2world[:3, 3].reshape(1, 3),
                         dtype=dtype,
                         device=device)

    # Create the search tree
    search_tree = None
    pen_distance = None
    filter_faces = None
    if interpenetration:
        from mesh_intersection.bvh_search_tree import BVH
        import mesh_intersection.loss as collisions_loss
        from mesh_intersection.filter_faces import FilterFaces

        assert use_cuda, 'Interpenetration term can only be used with CUDA'
        assert torch.cuda.is_available(), \
            'No CUDA Device! Interpenetration term can only be used' + \
            ' with CUDA'

        search_tree = BVH(max_collisions=max_collisions)

        pen_distance = \
            collisions_loss.DistanceFieldPenetrationLoss(
                sigma=df_cone_height, point2plane=point2plane,
                vectorized=True, penalize_outside=penalize_outside)

        if part_segm_fn:
            # Read the part segmentation
            part_segm_fn = os.path.expandvars(part_segm_fn)
            with open(part_segm_fn, 'rb') as faces_parents_file:
                face_segm_data = pickle.load(faces_parents_file,
                                             encoding='latin1')
            faces_segm = face_segm_data['segm']
            faces_parents = face_segm_data['parents']
            # Create the module used to filter invalid collision pairs
            filter_faces = FilterFaces(
                faces_segm=faces_segm,
                faces_parents=faces_parents,
                ign_part_pairs=ign_part_pairs).to(device=device)

    # load vertix ids of contact parts
    contact_verts_ids = ftov = None
    if contact:
        contact_verts_ids = []
        for part in contact_body_parts:
            with open(os.path.join(body_segments_dir, part + '.json'),
                      'r') as f:
                data = json.load(f)
                contact_verts_ids.append(list(set(data["verts_ind"])))
        contact_verts_ids = np.concatenate(contact_verts_ids)

        vertices = body_model(return_verts=True,
                              body_pose=torch.zeros((batch_size, 63),
                                                    dtype=dtype,
                                                    device=device)).vertices
        vertices_np = vertices.detach().cpu().numpy().squeeze()
        body_faces_np = body_model.faces_tensor.detach().cpu().numpy().reshape(
            -1, 3)
        m = Mesh(v=vertices_np, f=body_faces_np)
        ftov = m.faces_by_vertex(as_sparse_matrix=True)

        ftov = sparse.coo_matrix(ftov)
        indices = torch.LongTensor(np.vstack((ftov.row, ftov.col))).to(device)
        values = torch.FloatTensor(ftov.data).to(device)
        shape = ftov.shape
        ftov = torch.sparse.FloatTensor(indices, values, torch.Size(shape))

    # Read the scene scan if any
    scene_v = scene_vn = scene_f = None
    if scene_name is not None:
        if load_scene:
            scene = Mesh(filename=os.path.join(scene_dir, scene_name + '.ply'))

            scene.vn = scene.estimate_vertex_normals()

            scene_v = torch.tensor(scene.v[np.newaxis, :],
                                   dtype=dtype,
                                   device=device).contiguous()
            scene_vn = torch.tensor(scene.vn[np.newaxis, :],
                                    dtype=dtype,
                                    device=device)
            scene_f = torch.tensor(scene.f.astype(int)[np.newaxis, :],
                                   dtype=torch.long,
                                   device=device)

    # Weights used for the pose prior and the shape prior
    opt_weights_dict = {
        'data_weight': data_weights,
        'body_pose_weight': body_pose_prior_weights,
        'shape_weight': shape_weights
    }
    if use_face:
        opt_weights_dict['face_weight'] = face_joints_weights
        opt_weights_dict['expr_prior_weight'] = expr_weights
        opt_weights_dict['jaw_prior_weight'] = jaw_pose_prior_weights
    if use_hands:
        opt_weights_dict['hand_weight'] = hand_joints_weights
        opt_weights_dict['hand_prior_weight'] = hand_pose_prior_weights
    if interpenetration:
        opt_weights_dict['coll_loss_weight'] = coll_loss_weights
    if s2m:
        opt_weights_dict['s2m_weight'] = s2m_weights
    if m2s:
        opt_weights_dict['m2s_weight'] = m2s_weights
    if sdf_penetration:
        opt_weights_dict['sdf_penetration_weight'] = sdf_penetration_weights
    if contact:
        opt_weights_dict['contact_loss_weight'] = contact_loss_weights

    keys = opt_weights_dict.keys()
    opt_weights = [
        dict(zip(keys, vals))
        for vals in zip(*(opt_weights_dict[k] for k in keys
                          if opt_weights_dict[k] is not None))
    ]
    for weight_list in opt_weights:
        for key in weight_list:
            weight_list[key] = torch.tensor(weight_list[key],
                                            device=device,
                                            dtype=dtype)

    # load indices of the head of smpl-x model
    with open(osp.join(body_segments_dir, 'body_mask.json'), 'r') as fp:
        head_indx = np.array(json.load(fp))
    N = body_model.get_num_verts()
    body_indx = np.setdiff1d(np.arange(N), head_indx)
    head_mask = np.in1d(np.arange(N), head_indx)
    body_mask = np.in1d(np.arange(N), body_indx)

    # The indices of the joints used for the initialization of the camera
    init_joints_idxs = torch.tensor(init_joints_idxs, device=device)

    edge_indices = kwargs.get('body_tri_idxs')

    # which initialization mode to choose: similar traingles, mean of the scan or the average of both
    if init_mode == 'scan':
        init_t = init_trans
    elif init_mode == 'both':
        init_t = (init_trans.to(device) + fitting.guess_init(
            body_model,
            gt_joints,
            edge_indices,
            use_vposer=use_vposer,
            vposer=vposer,
            pose_embedding=pose_embedding,
            model_type=kwargs.get('model_type', 'smpl'),
            focal_length=focal_length_x,
            dtype=dtype)) / 2.0

    else:
        init_t = fitting.guess_init(body_model,
                                    gt_joints,
                                    edge_indices,
                                    use_vposer=use_vposer,
                                    vposer=vposer,
                                    pose_embedding=pose_embedding,
                                    model_type=kwargs.get(
                                        'model_type', 'smpl'),
                                    focal_length=focal_length_x,
                                    dtype=dtype)

    camera_loss = fitting.create_loss('camera_init',
                                      trans_estimation=init_t,
                                      init_joints_idxs=init_joints_idxs,
                                      depth_loss_weight=depth_loss_weight,
                                      camera_mode=camera_mode,
                                      dtype=dtype).to(device=device)
    camera_loss.trans_estimation[:] = init_t

    loss = fitting.create_loss(loss_type=loss_type,
                               joint_weights=joint_weights,
                               rho=rho,
                               use_joints_conf=use_joints_conf,
                               use_face=use_face,
                               use_hands=use_hands,
                               vposer=vposer,
                               pose_embedding=pose_embedding,
                               body_pose_prior=body_pose_prior,
                               shape_prior=shape_prior,
                               angle_prior=angle_prior,
                               expr_prior=expr_prior,
                               left_hand_prior=left_hand_prior,
                               right_hand_prior=right_hand_prior,
                               jaw_prior=jaw_prior,
                               interpenetration=interpenetration,
                               pen_distance=pen_distance,
                               search_tree=search_tree,
                               tri_filtering_module=filter_faces,
                               s2m=s2m,
                               m2s=m2s,
                               rho_s2m=rho_s2m,
                               rho_m2s=rho_m2s,
                               head_mask=head_mask,
                               body_mask=body_mask,
                               sdf_penetration=sdf_penetration,
                               voxel_size=voxel_size,
                               grid_min=grid_min,
                               grid_max=grid_max,
                               sdf=sdf,
                               sdf_normals=sdf_normals,
                               R=R,
                               t=t,
                               contact=contact,
                               contact_verts_ids=contact_verts_ids,
                               rho_contact=rho_contact,
                               contact_angle=contact_angle,
                               dtype=dtype,
                               **kwargs)
    loss = loss.to(device=device)

    with fitting.FittingMonitor(batch_size=batch_size,
                                visualize=visualize,
                                viz_mode=viz_mode,
                                **kwargs) as monitor:

        img = torch.tensor(img, dtype=dtype)

        H, W, _ = img.shape

        # Reset the parameters to estimate the initial translation of the
        # body model
        if camera_mode == 'moving':
            body_model.reset_params(body_pose=body_mean_pose)
            # Update the value of the translation of the camera as well as
            # the image center.
            with torch.no_grad():
                camera.translation[:] = init_t.view_as(camera.translation)
                camera.center[:] = torch.tensor([W, H], dtype=dtype) * 0.5

            # Re-enable gradient calculation for the camera translation
            camera.translation.requires_grad = True

            camera_opt_params = [camera.translation, body_model.global_orient]

        elif camera_mode == 'fixed':
            body_model.reset_params(body_pose=body_mean_pose, transl=init_t)
            camera_opt_params = [body_model.transl, body_model.global_orient]

        # If the distance between the 2D shoulders is smaller than a
        # predefined threshold then try 2 fits, the initial one and a 180
        # degree rotation
        shoulder_dist = torch.dist(gt_joints[:, left_shoulder_idx],
                                   gt_joints[:, right_shoulder_idx])
        try_both_orient = shoulder_dist.item() < side_view_thsh

        camera_optimizer, camera_create_graph = optim_factory.create_optimizer(
            camera_opt_params, **kwargs)

        # The closure passed to the optimizer
        fit_camera = monitor.create_fitting_closure(
            camera_optimizer,
            body_model,
            camera,
            gt_joints,
            camera_loss,
            create_graph=camera_create_graph,
            use_vposer=use_vposer,
            vposer=vposer,
            pose_embedding=pose_embedding,
            scan_tensor=scan_tensor,
            return_full_pose=False,
            return_verts=False)

        # Step 1: Optimize over the torso joints the camera translation
        # Initialize the computational graph by feeding the initial translation
        # of the camera and the initial pose of the body model.
        camera_init_start = time.time()
        cam_init_loss_val = monitor.run_fitting(camera_optimizer,
                                                fit_camera,
                                                camera_opt_params,
                                                body_model,
                                                use_vposer=use_vposer,
                                                pose_embedding=pose_embedding,
                                                vposer=vposer)

        if interactive:
            if use_cuda and torch.cuda.is_available():
                torch.cuda.synchronize()
            tqdm.write('Camera initialization done after {:.4f}'.format(
                time.time() - camera_init_start))
            tqdm.write('Camera initialization final loss {:.4f}'.format(
                cam_init_loss_val))

        # If the 2D detections/positions of the shoulder joints are too
        # close the rotate the body by 180 degrees and also fit to that
        # orientation
        if try_both_orient:
            body_orient = body_model.global_orient.detach().cpu().numpy()
            flipped_orient = cv2.Rodrigues(body_orient)[0].dot(
                cv2.Rodrigues(np.array([0., np.pi, 0]))[0])
            flipped_orient = cv2.Rodrigues(flipped_orient)[0].ravel()

            flipped_orient = torch.tensor(flipped_orient,
                                          dtype=dtype,
                                          device=device).unsqueeze(dim=0)
            orientations = [body_orient, flipped_orient]
        else:
            orientations = [body_model.global_orient.detach().cpu().numpy()]

        # store here the final error for both orientations,
        # and pick the orientation resulting in the lowest error
        results = []
        body_transl = body_model.transl.clone().detach()
        # Step 2: Optimize the full model
        final_loss_val = 0
        for or_idx, orient in enumerate(tqdm(orientations,
                                             desc='Orientation')):
            opt_start = time.time()

            new_params = defaultdict(transl=body_transl,
                                     global_orient=orient,
                                     body_pose=body_mean_pose)
            body_model.reset_params(**new_params)
            if use_vposer:
                with torch.no_grad():
                    pose_embedding.fill_(0)

            for opt_idx, curr_weights in enumerate(
                    tqdm(opt_weights, desc='Stage')):
                if opt_idx not in trans_opt_stages:
                    body_model.transl.requires_grad = False
                else:
                    body_model.transl.requires_grad = True
                body_params = list(body_model.parameters())

                final_params = list(
                    filter(lambda x: x.requires_grad, body_params))

                if use_vposer:
                    final_params.append(pose_embedding)

                body_optimizer, body_create_graph = optim_factory.create_optimizer(
                    final_params, **kwargs)
                body_optimizer.zero_grad()

                curr_weights['bending_prior_weight'] = (
                    3.17 * curr_weights['body_pose_weight'])
                if use_hands:
                    joint_weights[:, 25:76] = curr_weights['hand_weight']
                if use_face:
                    joint_weights[:, 76:] = curr_weights['face_weight']
                loss.reset_loss_weights(curr_weights)

                closure = monitor.create_fitting_closure(
                    body_optimizer,
                    body_model,
                    camera=camera,
                    gt_joints=gt_joints,
                    joints_conf=joints_conf,
                    joint_weights=joint_weights,
                    loss=loss,
                    create_graph=body_create_graph,
                    use_vposer=use_vposer,
                    vposer=vposer,
                    pose_embedding=pose_embedding,
                    scan_tensor=scan_tensor,
                    scene_v=scene_v,
                    scene_vn=scene_vn,
                    scene_f=scene_f,
                    ftov=ftov,
                    return_verts=True,
                    return_full_pose=True)

                if interactive:
                    if use_cuda and torch.cuda.is_available():
                        torch.cuda.synchronize()
                    stage_start = time.time()
                final_loss_val = monitor.run_fitting(
                    body_optimizer,
                    closure,
                    final_params,
                    body_model,
                    pose_embedding=pose_embedding,
                    vposer=vposer,
                    use_vposer=use_vposer)

                if interactive:
                    if use_cuda and torch.cuda.is_available():
                        torch.cuda.synchronize()
                    elapsed = time.time() - stage_start
                    if interactive:
                        tqdm.write(
                            'Stage {:03d} done after {:.4f} seconds'.format(
                                opt_idx, elapsed))

            if interactive:
                if use_cuda and torch.cuda.is_available():
                    torch.cuda.synchronize()
                elapsed = time.time() - opt_start
                tqdm.write(
                    'Body fitting Orientation {} done after {:.4f} seconds'.
                    format(or_idx, elapsed))
                tqdm.write(
                    'Body final loss val = {:.5f}'.format(final_loss_val))

            # Get the result of the fitting process
            # Store in it the errors list in order to compare multiple
            # orientations, if they exist
            result = {
                'camera_' + str(key): val.detach().cpu().numpy()
                for key, val in camera.named_parameters()
            }
            result.update({
                key: val.detach().cpu().numpy()
                for key, val in body_model.named_parameters()
            })
            if use_vposer:
                result['pose_embedding'] = pose_embedding.detach().cpu().numpy(
                )
                body_pose = vposer.decode(pose_embedding,
                                          output_type='aa').view(
                                              1, -1) if use_vposer else None
                result['body_pose'] = body_pose.detach().cpu().numpy()

            results.append({'loss': final_loss_val, 'result': result})

        with open(result_fn, 'wb') as result_file:
            if len(results) > 1:
                min_idx = (0 if results[0]['loss'] < results[1]['loss'] else 1)
            else:
                min_idx = 0
            pickle.dump(results[min_idx]['result'], result_file, protocol=2)

    if save_meshes or visualize:
        body_pose = vposer.decode(pose_embedding, output_type='aa').view(
            1, -1) if use_vposer else None

        model_type = kwargs.get('model_type', 'smpl')
        append_wrists = model_type == 'smpl' and use_vposer
        if append_wrists:
            wrist_pose = torch.zeros([body_pose.shape[0], 6],
                                     dtype=body_pose.dtype,
                                     device=body_pose.device)
            body_pose = torch.cat([body_pose, wrist_pose], dim=1)

        model_output = body_model(return_verts=True, body_pose=body_pose)
        vertices = model_output.vertices.detach().cpu().numpy().squeeze()

        import trimesh

        out_mesh = trimesh.Trimesh(vertices, body_model.faces, process=False)
        out_mesh.export(mesh_fn)

    if render_results:
        import pyrender

        # common
        H, W = 1080, 1920
        camera_center = np.array([951.30, 536.77])
        camera_pose = np.eye(4)
        camera_pose = np.array([1.0, -1.0, -1.0, 1.0]).reshape(-1,
                                                               1) * camera_pose
        camera = pyrender.camera.IntrinsicsCamera(fx=1060.53,
                                                  fy=1060.38,
                                                  cx=camera_center[0],
                                                  cy=camera_center[1])
        light = pyrender.DirectionalLight(color=np.ones(3), intensity=2.0)

        material = pyrender.MetallicRoughnessMaterial(
            metallicFactor=0.0,
            alphaMode='OPAQUE',
            baseColorFactor=(1.0, 1.0, 0.9, 1.0))
        body_mesh = pyrender.Mesh.from_trimesh(out_mesh, material=material)

        ## rendering body
        img = img.detach().cpu().numpy()
        H, W, _ = img.shape

        scene = pyrender.Scene(bg_color=[0.0, 0.0, 0.0, 0.0],
                               ambient_light=(0.3, 0.3, 0.3))
        scene.add(camera, pose=camera_pose)
        scene.add(light, pose=camera_pose)
        # for node in light_nodes:
        #     scene.add_node(node)

        scene.add(body_mesh, 'mesh')

        r = pyrender.OffscreenRenderer(viewport_width=W,
                                       viewport_height=H,
                                       point_size=1.0)
        color, _ = r.render(scene, flags=pyrender.RenderFlags.RGBA)
        color = color.astype(np.float32) / 255.0

        valid_mask = (color[:, :, -1] > 0)[:, :, np.newaxis]
        input_img = img
        output_img = (color[:, :, :-1] * valid_mask +
                      (1 - valid_mask) * input_img)

        img = pil_img.fromarray((output_img * 255).astype(np.uint8))
        img.save(out_img_fn)

        ##redering body+scene
        body_mesh = pyrender.Mesh.from_trimesh(out_mesh, material=material)
        static_scene = trimesh.load(osp.join(scene_dir, scene_name + '.ply'))
        trans = np.linalg.inv(cam2world)
        static_scene.apply_transform(trans)

        static_scene_mesh = pyrender.Mesh.from_trimesh(static_scene)

        scene = pyrender.Scene()
        scene.add(camera, pose=camera_pose)
        scene.add(light, pose=camera_pose)

        scene.add(static_scene_mesh, 'mesh')
        scene.add(body_mesh, 'mesh')

        r = pyrender.OffscreenRenderer(viewport_width=W, viewport_height=H)
        color, _ = r.render(scene)
        color = color.astype(np.float32) / 255.0
        img = pil_img.fromarray((color * 255).astype(np.uint8))
        img.save(body_scene_rendering_fn)
Exemple #28
0
def show_scene(vertices,
               faces,
               camera_pose,
               image,
               K,
               joints=[],
               color=(0.8, 0.3, 0.3, 1.0)):

    mats = []
    for c in color:

        material = pyrender.MetallicRoughnessMaterial(metallicFactor=0.2,
                                                      alphaMode='OPAQUE',
                                                      baseColorFactor=c)
        mats.append(material)

    scene = pyrender.Scene(ambient_light=(0.5, 0.5, 0.5))

    for i, v in enumerate(vertices):
        mesh = trimesh.Trimesh(v, faces)
        rot = trimesh.transformations.rotation_matrix(np.radians(180),
                                                      [1, 0, 0])
        mesh.apply_transform(rot)
        mesh = pyrender.Mesh.from_trimesh(mesh, material=mats[i])

        scene.add(mesh, 'mesh')

    camera = pyrender.IntrinsicsCamera(fx=K[0, 0],
                                       fy=K[1, 1],
                                       cx=K[0, 2],
                                       cy=K[1, 2])
    scene.add(camera, pose=camera_pose)

    cam = trimesh.creation.axis()
    mesh = pyrender.Mesh.from_trimesh(cam, smooth=False)
    scene.add(mesh, pose=camera_pose)
    scene.add(mesh, pose=np.linalg.inv(camera_pose))
    scene.add(mesh, pose=np.eye(4))

    light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=1)
    light_pose = np.eye(4)

    light_pose[:3, 3] = np.array([0, -1, 1])
    scene.add(light, pose=light_pose)

    light_pose[:3, 3] = np.array([0, 1, 1])
    scene.add(light, pose=light_pose)

    light_pose[:3, 3] = np.array([1, 1, 2])
    scene.add(light, pose=light_pose)

    for i, j_list in enumerate(joints):
        for j in j_list:
            mesh = trimesh.creation.uv_sphere(0.01, count=[32, 32])
            mesh = pyrender.Mesh.from_trimesh(mesh, material=mats[i])

            pos = np.eye(4)
            pos[:3, 3] = j[:-1]
            scene.add(mesh, 'mesh', pose=pos)

    pyrender.Viewer(scene)
Exemple #29
0
def imshow_mesh_3d(img,
                   vertices,
                   faces,
                   camera_center,
                   focal_length,
                   colors=(76, 76, 204)):
    """Render 3D meshes on background image.

    Args:
        img(np.ndarray): Background image.
        vertices (list of np.ndarray): Vetrex coordinates in camera space.
        faces (list of np.ndarray): Faces of meshes.
        camera_center ([2]): Center pixel.
        focal_length ([2]): Focal length of camera.
        colors (list[str or tuple or Color]): A list of mesh colors.
    """

    H, W, C = img.shape

    if not has_pyrender:
        warnings.warn('pyrender package is not installed.')
        return img

    if not has_trimesh:
        warnings.warn('trimesh package is not installed.')
        return img

    try:
        renderer = pyrender.OffscreenRenderer(viewport_width=W,
                                              viewport_height=H)
    except (ImportError, RuntimeError):
        warnings.warn('pyrender package is not installed correctly.')
        return img

    if not isinstance(colors, list):
        colors = [colors for _ in range(len(vertices))]
    colors = [color_val(c) for c in colors]

    depth_map = np.ones([H, W]) * np.inf
    output_img = img
    for idx in range(len(vertices)):
        color = colors[idx]
        color = [c / 255.0 for c in color]
        color.append(1.0)
        vert = vertices[idx]
        face = faces[idx]

        material = pyrender.MetallicRoughnessMaterial(metallicFactor=0.2,
                                                      alphaMode='OPAQUE',
                                                      baseColorFactor=color)

        mesh = trimesh.Trimesh(vert, face)
        rot = trimesh.transformations.rotation_matrix(np.radians(180),
                                                      [1, 0, 0])
        mesh.apply_transform(rot)
        mesh = pyrender.Mesh.from_trimesh(mesh, material=material)

        scene = pyrender.Scene(ambient_light=(0.5, 0.5, 0.5))
        scene.add(mesh, 'mesh')

        camera_pose = np.eye(4)
        camera = pyrender.IntrinsicsCamera(fx=focal_length[0],
                                           fy=focal_length[1],
                                           cx=camera_center[0],
                                           cy=camera_center[1],
                                           zfar=1e5)
        scene.add(camera, pose=camera_pose)

        light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=1)
        light_pose = np.eye(4)

        light_pose[:3, 3] = np.array([0, -1, 1])
        scene.add(light, pose=light_pose)

        light_pose[:3, 3] = np.array([0, 1, 1])
        scene.add(light, pose=light_pose)

        light_pose[:3, 3] = np.array([1, 1, 2])
        scene.add(light, pose=light_pose)

        color, rend_depth = renderer.render(scene,
                                            flags=pyrender.RenderFlags.RGBA)

        valid_mask = (rend_depth < depth_map) * (rend_depth > 0)
        depth_map[valid_mask] = rend_depth[valid_mask]
        valid_mask = valid_mask[:, :, None]
        output_img = (valid_mask * color[:, :, :3] +
                      (1 - valid_mask) * output_img)

    return output_img
Exemple #30
0
def render_smpl_on_image(vertices,
                         faces,
                         image,
                         intrinsics,
                         pose,
                         transl,
                         alpha=1.0,
                         filename='render_sample.png'):

    img_size = image.shape[-2]
    material = pyrender.MetallicRoughnessMaterial(metallicFactor=0.2,
                                                  alphaMode='OPAQUE',
                                                  baseColorFactor=(0.8, 0.3,
                                                                   0.3, 1.0))

    # Generate SMPL vertices mesh
    mesh = trimesh.Trimesh(vertices, faces)

    # Default rotation of SMPL body model
    rot = trimesh.transformations.rotation_matrix(np.radians(180), [1, 0, 0])
    mesh.apply_transform(rot)

    mesh = pyrender.Mesh.from_trimesh(mesh, material=material)

    scene = pyrender.Scene(ambient_light=(0.5, 0.5, 0.5))
    scene.add(mesh, 'mesh')

    camera_pose = np.eye(4)
    camera_pose[:3, :3] = pose
    camera_pose[:3, 3] = transl
    camera = pyrender.IntrinsicsCamera(fx=intrinsics[0, 0],
                                       fy=intrinsics[1, 1],
                                       cx=intrinsics[0, 2],
                                       cy=intrinsics[1, 2])
    scene.add(camera, pose=camera_pose)

    # Light information
    light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=1)
    light_pose = np.eye(4)

    light_pose[:3, 3] = np.array([0, -1, 1])
    scene.add(light, pose=light_pose)

    light_pose[:3, 3] = np.array([0, 1, 1])
    scene.add(light, pose=light_pose)

    light_pose[:3, 3] = np.array([1, 1, 2])
    scene.add(light, pose=light_pose)

    renderer = pyrender.OffscreenRenderer(viewport_width=img_size,
                                          viewport_height=img_size,
                                          point_size=1.0)

    color, rend_depth = renderer.render(scene, flags=pyrender.RenderFlags.RGBA)
    valid_mask = (rend_depth > 0)[:, :, None]

    color = color.astype(np.float32) / 255.0
    valid_mask = (rend_depth > 0)[:, :, None]

    output_img = color[:, :, :3] * valid_mask * alpha + \
                 valid_mask * image / 255 * (1-alpha) + (1 - valid_mask) * image / 255

    cv2.imwrite(filename, (255 * output_img).astype(np.int16))