Exemple #1
0
def _create_resample_kdtree(source_lons,
                            source_lats,
                            valid_input_index,
                            nprocs=1):
    """Set up kd tree on input."""
    source_lons_valid = source_lons[valid_input_index]
    source_lats_valid = source_lats[valid_input_index]

    if nprocs > 1:
        cartesian = _spatial_mp.Cartesian_MP(nprocs)
    else:
        cartesian = _spatial_mp.Cartesian()

    input_coords = cartesian.transform_lonlats(source_lons_valid,
                                               source_lats_valid)

    if input_coords.size == 0:
        raise EmptyResult('No valid data points in input data')

    # Build kd-tree on input
    if nprocs > 1:
        resample_kdtree = _spatial_mp.cKDTree_MP(input_coords, nprocs=nprocs)
    else:
        resample_kdtree = KDTree(input_coords)

    return resample_kdtree
Exemple #2
0
def _create_resample_kdtree(source_lons,
                            source_lats,
                            valid_input_index,
                            nprocs=1):
    """Set up kd tree on input"""
    """
    if not isinstance(source_geo_def, geometry.BaseDefinition):
        raise TypeError('source_geo_def must be of geometry type')

    #Get reduced cartesian coordinates and flatten them
    source_cartesian_coords = source_geo_def.get_cartesian_coords(nprocs=nprocs)
    input_coords = geometry._flatten_cartesian_coords(source_cartesian_coords)
    input_coords = input_coords[valid_input_index]
    """

    source_lons_valid = source_lons[valid_input_index]
    source_lats_valid = source_lats[valid_input_index]

    if nprocs > 1:
        cartesian = _spatial_mp.Cartesian_MP(nprocs)
    else:
        cartesian = _spatial_mp.Cartesian()

    input_coords = cartesian.transform_lonlats(source_lons_valid,
                                               source_lats_valid)

    if input_coords.size == 0:
        raise EmptyResult('No valid data points in input data')

    # Build kd-tree on input
    if kd_tree_name == 'pykdtree':
        resample_kdtree = KDTree(input_coords)
    elif nprocs > 1:
        resample_kdtree = _spatial_mp.cKDTree_MP(input_coords, nprocs=nprocs)
    else:
        resample_kdtree = sp.cKDTree(input_coords)

    return resample_kdtree
Exemple #3
0
def _create_resample_kdtree(source_lons, source_lats, valid_input_index, nprocs=1):
    """Set up kd tree on input"""

    """
    if not isinstance(source_geo_def, geometry.BaseDefinition):
        raise TypeError('source_geo_def must be of geometry type')
    
    #Get reduced cartesian coordinates and flatten them
    source_cartesian_coords = source_geo_def.get_cartesian_coords(nprocs=nprocs)
    input_coords = geometry._flatten_cartesian_coords(source_cartesian_coords)
    input_coords = input_coords[valid_input_index]
    """

    source_lons_valid = source_lons[valid_input_index]
    source_lats_valid = source_lats[valid_input_index]

    if nprocs > 1:
        cartesian = _spatial_mp.Cartesian_MP(nprocs)
    else:
        cartesian = _spatial_mp.Cartesian()

    input_coords = cartesian.transform_lonlats(
        source_lons_valid, source_lats_valid)

    if input_coords.size == 0:
        raise EmptyResult('No valid data points in input data')

    # Build kd-tree on input
    if kd_tree_name == 'pykdtree':
        resample_kdtree = KDTree(input_coords)
    elif nprocs > 1:
        resample_kdtree = _spatial_mp.cKDTree_MP(input_coords,
                                                 nprocs=nprocs)
    else:
        resample_kdtree = sp.cKDTree(input_coords)

    return resample_kdtree