Exemple #1
0
    def precompute_redfield_tensor_finegrid(self, t_init, t_final, dt,
                                            integrator):
        if self.is_verbose:
            print("\n--- Precomputing the Redfield tensor on a fine RK4 grid")
        int_order = integrator.order
        c = integrator.c
        n_timesteps = int((t_final - t_init) / dt + 1)
        self.redfield_tensor_ni = []
        cost = []
        rate_file = open('rate_%s.dat' % (self.method), 'w')
        for n in range(n_timesteps):
            self.redfield_tensor_ni.append([])
            for i in range(int_order):
                t = t_init + n * dt + c[i] * dt
                self.make_redfield_tensor(t)
                self.redfield_tensor_ni[n].append(self.redfield_tensor)

            cost.append(
                utils.tensor_diff(self.redfield_tensor,
                                  self.redfield_tensor_ni[n - 1][i]))
            if n > 0 and cost[n] < self.markov_tol * np.std(cost):
                if self.is_verbose:
                    print("\n--- Tensor has stopped changing at t ="), t
                self.n_markov = n
                rate_file.close()
                break

            if n > 0 and t >= self.markov_time:
                if self.is_verbose:
                    print("\n--- Tensor calculation stopped at t ="), t
                self.n_markov = n
                rate_file.close()
                break

            rate_file.write('%0.6f ' % (t))
            for row in self.redfield_tensor:
                for R in row:
                    rate_file.write('%0.6f %0.6f ' % (R.real, R.imag))
            rate_file.write('\n')

        self.n_markov = n
        rate_file.close()
        if self.is_verbose:
            print("\n--- Done precomputing the Redfield tensor")
Exemple #2
0
    def precompute_redfield_tensor_finegrid(self, t_init, t_final, dt, integrator):
        if self.is_verbose:
            print "\n--- Precomputing the Redfield tensor on a fine RK4 grid"
        int_order = integrator.order
        c = integrator.c
        n_timesteps = int( (t_final-t_init)/dt + 1 )
        self.redfield_tensor_ni = []
        cost = []
        rate_file = open('rate_%s.dat'%(self.method),'w')
        for n in range(n_timesteps):
            self.redfield_tensor_ni.append([])
            for i in range(int_order):
                t = t_init + n*dt + c[i]*dt
                self.make_redfield_tensor(t)
                self.redfield_tensor_ni[n].append(self.redfield_tensor)

            cost.append( utils.tensor_diff( self.redfield_tensor, 
                                            self.redfield_tensor_ni[n-1][i] ) )
            if n > 0 and cost[n] < self.markov_tol*np.std(cost):
                if self.is_verbose:
                    print "\n--- Tensor has stopped changing at t =", t
                self.n_markov = n
                rate_file.close()
                break

            if n > 0 and t >= self.markov_time:
                if self.is_verbose:
                    print "\n--- Tensor calculation stopped at t =", t
                self.n_markov = n
                rate_file.close()
                break

            rate_file.write('%0.6f '%(t))
            for row in self.redfield_tensor:
                for R in row:
                    rate_file.write('%0.6f %0.6f '%(R.real, R.imag))
            rate_file.write('\n')

        self.n_markov = n
        rate_file.close()
        if self.is_verbose:
            print "\n--- Done precomputing the Redfield tensor"
Exemple #3
0
    def precompute_redfield_tensor(self, t_init, t_final, dt):
        """Precompute the time-dependent Redfield-like tensor, store in array.

        Parameters
        ----------
        t_init : float
            Initial time at which to start precomputing.
        f_final : float
            Final time at which to stop precomputing.
        dt : float
            Timestep for precomputing.
        integrator : Integrator
            An instance of the pyrho Integrator class.

        Notes
        -----
        The tensor is stored on a coarse grid which is ignorant to the 
        Integrator grid (e.g. RK4).

        """
        if self.is_verbose:
            print "\n--- Precomputing the Redfield tensor"
        n_timesteps = int( (t_final-t_init)/dt + 1 )
        self.redfield_tensor_n = []
        redfield_tensor_integral_n = []
        cost = []
        if self.method == 'TCL2':
            redfield_tensor_n = []
            for time in np.arange(0.0, t_init, dt):
                self.make_redfield_tensor(time)
                redfield_tensor_n.append(self.redfield_tensor)
            redfield_tensor_integral_0_t_init = np.trapz(redfield_tensor_n, dx=dt, axis=0)

        for n in range(n_timesteps):
            time = t_init + n*dt
            self.make_redfield_tensor(time)
            self.redfield_tensor_n.append(self.redfield_tensor)

            # Collect running integral for TCL2
            if self.method == 'TCL2':
                redfield_tensor_integral_n.append(redfield_tensor_integral_0_t_init
                    + np.trapz(self.redfield_tensor_n[:n+1], dx=dt, axis=0) )

            cost.append( utils.tensor_diff( self.redfield_tensor, 
                                            self.redfield_tensor_n[n-1] ) )
            if n > 0 and cost[n] < self.markov_tol*np.std(cost):
                if self.is_verbose:
                    print "\n--- Tensor has stopped changing at t =", time
                self.n_markov = n
                break

            if n > 0 and time >= self.markov_time:
                if self.is_verbose:
                    print "\n--- Tensor calculation stopped at t =", time
                self.n_markov = n
                break

        self.n_markov = n
        if self.method == 'TCL2':
            self.redfield_tensor_n = redfield_tensor_integral_n

        if self.is_verbose:
            print "\n--- Done precomputing the Redfield tensor"

        cost_file = open('cost_%s.dat'%(self.method),'w')
        rate_file = open('rate_%s.dat'%(self.method),'w')
        for n in range(self.n_markov):
            time = t_init + n*dt
            cost_file.write('%0.6f %0.6f %0.6f %0.6f\n'
                            %(time, cost[n], np.std(cost[:n+1]), self.markov_tol))
            rate_file.write('%0.6f '%(time))
            for row in self.redfield_tensor_n[n]:
                for R in row:
                    rate_file.write('%0.6f %0.6f '%(R.real, R.imag))
            rate_file.write('\n')

        cost_file.close()
        rate_file.close()
Exemple #4
0
    def precompute_redfield_tensor(self, t_init, t_final, dt):
        """Precompute the time-dependent Redfield-like tensor, store in array.

        Parameters
        ----------
        t_init : float
            Initial time at which to start precomputing.
        f_final : float
            Final time at which to stop precomputing.
        dt : float
            Timestep for precomputing.
        integrator : Integrator
            An instance of the pyrho Integrator class.

        Notes
        -----
        The tensor is stored on a coarse grid which is ignorant to the 
        Integrator grid (e.g. RK4).

        """
        if self.is_verbose:
            print "\n--- Precomputing the Redfield tensor"
        n_timesteps = int( (t_final-t_init)/dt + 1 )
        self.redfield_tensor_n = []
        redfield_tensor_integral_n = []
        cost = []
        for n in range(n_timesteps):
            t = t_init + n*dt
            self.make_redfield_tensor(t)
            self.redfield_tensor_n.append(self.redfield_tensor)

            # Collect running integral for TCL2
            if self.method == 'TCL2':
                redfield_tensor_integral_n.append(
                        np.trapz(self.redfield_tensor_n[:n+1], dx=dt, axis=0) )

            cost.append( utils.tensor_diff( self.redfield_tensor, 
                                            self.redfield_tensor_n[n-1] ) )
            if n > 0 and cost[n] < self.markov_tol*np.std(cost):
                if self.is_verbose:
                    print "\n--- Tensor has stopped changing at t =", t
                self.n_markov = n
                break

            if n > 0 and t >= self.markov_time:
                if self.is_verbose:
                    print "\n--- Tensor calculation stopped at t =", t
                self.n_markov = n
                break

        self.n_markov = n
        if self.method == 'TCL2':
            self.redfield_tensor_n = redfield_tensor_integral_n

        if self.is_verbose:
            print "\n--- Done precomputing the Redfield tensor"

        cost_file = open('cost_%s.dat'%(self.method),'w')
        rate_file = open('rate_%s.dat'%(self.method),'w')
        for n in range(self.n_markov):
            t = t_init + n*dt
            cost_file.write('%0.6f %0.6f %0.6f %0.6f\n'
                            %(t, cost[n], np.std(cost[:n+1]), self.markov_tol))
            rate_file.write('%0.6f '%(t))
            for row in self.redfield_tensor_n[n]:
                for R in row:
                    rate_file.write('%0.6f %0.6f '%(R.real, R.imag))
            rate_file.write('\n')

        cost_file.close()
        rate_file.close()