Exemple #1
0
def test_guide_list(auto_class):

    def model():
        pyro.sample("x", dist.Normal(0., 1.))
        pyro.sample("y", dist.MultivariateNormal(torch.zeros(5), torch.eye(5, 5)))

    guide = AutoGuideList(model)
    guide.add(auto_class(poutine.block(model, expose=["x"]), prefix="auto_x"))
    guide.add(auto_class(poutine.block(model, expose=["y"]), prefix="auto_y"))
    guide()
Exemple #2
0
def test_guide_list(auto_class):
    def model():
        pyro.sample("x", dist.Normal(0., 1.).expand([2]))
        pyro.sample("y",
                    dist.MultivariateNormal(torch.zeros(5), torch.eye(5, 5)))

    guide = AutoGuideList(model)
    guide.add(auto_class(poutine.block(model, expose=["x"]), prefix="auto_x"))
    guide.add(auto_class(poutine.block(model, expose=["y"]), prefix="auto_y"))
    guide()
Exemple #3
0
def test_discrete_parallel(continuous_class):
    K = 2
    data = torch.tensor([0., 1., 10., 11., 12.])

    def model(data):
        weights = pyro.sample('weights', dist.Dirichlet(0.5 * torch.ones(K)))
        locs = pyro.sample('locs', dist.Normal(0, 10).expand_by([K]).independent(1))
        scale = pyro.sample('scale', dist.LogNormal(0, 1))

        with pyro.iarange('data', len(data)):
            weights = weights.expand(torch.Size((len(data),)) + weights.shape)
            assignment = pyro.sample('assignment', dist.Categorical(weights))
            pyro.sample('obs', dist.Normal(locs[assignment], scale), obs=data)

    guide = AutoGuideList(model)
    guide.add(continuous_class(poutine.block(model, hide=["assignment"])))
    guide.add(AutoDiscreteParallel(poutine.block(model, expose=["assignment"])))

    elbo = TraceEnum_ELBO(max_iarange_nesting=1)
    loss = elbo.loss_and_grads(model, guide, data)
    assert np.isfinite(loss), loss
Exemple #4
0
def test_callable(auto_class):
    def model():
        pyro.sample("x", dist.Normal(0., 1.))
        pyro.sample("y",
                    dist.MultivariateNormal(torch.zeros(5), torch.eye(5, 5)))

    def guide_x():
        x_loc = pyro.param("x_loc", torch.tensor(0.))
        pyro.sample("x", dist.Delta(x_loc))

    guide = AutoGuideList(model)
    guide.add(guide_x)
    guide.add(auto_class(poutine.block(model, expose=["y"]), prefix="auto_y"))
    values = guide()
    assert set(values) == set(["y"])
Exemple #5
0
def auto_guide_callable(model):
    def guide_x():
        x_loc = pyro.param("x_loc", torch.tensor(1.))
        x_scale = pyro.param("x_scale",
                             torch.tensor(2.),
                             constraint=constraints.positive)
        pyro.sample("x", dist.Normal(x_loc, x_scale))

    def median_x():
        return {"x": pyro.param("x_loc", torch.tensor(1.))}

    guide = AutoGuideList(model)
    guide.add(AutoCallable(model, guide_x, median_x))
    guide.add(AutoDiagonalNormal(poutine.block(model, hide=["x"])))
    return guide
Exemple #6
0
def test_discrete_parallel(continuous_class):
    K = 2
    data = torch.tensor([0., 1., 10., 11., 12.])

    def model(data):
        weights = pyro.sample('weights', dist.Dirichlet(0.5 * torch.ones(K)))
        locs = pyro.sample('locs',
                           dist.Normal(0, 10).expand_by([K]).to_event(1))
        scale = pyro.sample('scale', dist.LogNormal(0, 1))

        with pyro.plate('data', len(data)):
            weights = weights.expand(torch.Size((len(data), )) + weights.shape)
            assignment = pyro.sample('assignment', dist.Categorical(weights))
            pyro.sample('obs', dist.Normal(locs[assignment], scale), obs=data)

    guide = AutoGuideList(model)
    guide.add(continuous_class(poutine.block(model, hide=["assignment"])))
    guide.add(AutoDiscreteParallel(poutine.block(model,
                                                 expose=["assignment"])))

    elbo = TraceEnum_ELBO(max_plate_nesting=1)
    loss = elbo.loss_and_grads(model, guide, data)
    assert np.isfinite(loss), loss
Exemple #7
0
def auto_guide_list_x(model):
    guide = AutoGuideList(model)
    guide.add(AutoDelta(poutine.block(model, expose=["x"])))
    guide.add(AutoDiagonalNormal(poutine.block(model, hide=["x"])))
    return guide
        'beta_resp_loc', torch.randn(num_resp,
                                     len(mix_params),
                                     device=x.device))
    beta_scale = pyro.param(
        'beta_resp_scale',
        torch.tril(
            1. * torch.eye(len(mix_params), len(mix_params), device=x.device)),
        constraint=constraints.lower_cholesky)
    pyro.sample(
        "beta_resp",
        dist.MultivariateNormal(beta_loc, scale_tril=beta_scale).to_event(1))


# In[11]:

guide = AutoGuideList(model)
guide.add(AutoDiagonalNormal(poutine.block(model, expose=['theta',
                                                          'L_omega'])))
guide.add(my_local_guide)  # automatically wrapped in an AutoCallable

# # Run variational inference

# In[12]:

# prepare data for running inference
train_x = torch.tensor(alt_attributes, dtype=torch.float)
train_x = train_x.cuda()
train_y = torch.tensor(true_choices, dtype=torch.int)
train_y = train_y.cuda()
alt_av_cuda = torch.from_numpy(alt_availability)
alt_av_cuda = alt_av_cuda.cuda()