Exemple #1
0
def test_log_beta_stirling(tol):
    x = torch.logspace(-5, 5, 200)
    y = x.unsqueeze(-1)

    expected = log_beta(x, y)
    actual = log_beta(x, y, tol=tol)

    assert (actual <= expected).all()
    assert (expected < actual + tol).all()
Exemple #2
0
    def log_prob(self, value):
        if self._validate_args:
            self._validate_sample(value)

        n = self.total_count
        k = value
        a = self.concentration1
        b = self.concentration0
        tol = self.approx_log_prob_tol
        return (log_binomial(n, k, tol) + log_beta(k + a, n - k + b, tol) -
                log_beta(a, b, tol))
Exemple #3
0
 def log_prob(self, value):
     if self._validate_args:
         self._validate_sample(value)
     post_value = self.concentration + value
     return (-log_beta(self.concentration, value + 1) - post_value.log() +
             self.concentration * self.rate.log() - post_value *
             (1 + self.rate).log())