Exemple #1
0
        def guide():
            mu_q = pyro.param("mu_q", Variable(self.analytic_mu_n.data + 0.094 * torch.ones(2),
                                               requires_grad=True))
            log_sig_q = pyro.param("log_sig_q", Variable(
                                   self.analytic_log_sig_n.data - 0.11 * torch.ones(2), requires_grad=True))
            sig_q = torch.exp(log_sig_q)
            trivial_baseline = pyro.module("mu_baseline", pt_mu_baseline, tags="baseline")
            baseline_value = trivial_baseline(ng_ones(1))
            mu_latent = pyro.sample("mu_latent",
                                    dist.Normal(mu_q, sig_q, reparameterized=False),
                                    baseline=dict(baseline_value=baseline_value))

            def obs_inner(i, _i, _x):
                for k in range(n_superfluous_top + n_superfluous_bottom):
                    z_baseline = pyro.module("z_baseline_%d_%d" % (i, k),
                                             pt_superfluous_baselines[3 * k + i], tags="baseline")
                    baseline_value = z_baseline(mu_latent.detach()).unsqueeze(-1)
                    mean_i = pyro.param("mean_%d_%d" % (i, k),
                                        Variable(0.5 * torch.ones(4 - i, 1), requires_grad=True))
                    pyro.sample("z_%d_%d" % (i, k),
                                dist.Normal(mean_i, ng_ones(4 - i, 1), reparameterized=False),
                                baseline=dict(baseline_value=baseline_value))

            def obs_outer(i, x):
                pyro.map_data("map_obs_inner_%d" % i, x, lambda _i, _x:
                              obs_inner(i, _i, _x), batch_size=4 - i)

            pyro.map_data("map_obs_outer", [self.data_tensor[0:4, :], self.data_tensor[4:7, :],
                                            self.data_tensor[7:9, :]],
                          lambda i, x: obs_outer(i, x), batch_size=3)

            return mu_latent
Exemple #2
0
        def guide():
            mu_q = pyro.param(
                "mu_q",
                Variable(self.analytic_mu_n.data + 0.234 * torch.ones(2),
                         requires_grad=True))
            log_sig_q = pyro.param(
                "log_sig_q",
                Variable(self.analytic_log_sig_n.data - 0.27 * torch.ones(2),
                         requires_grad=True))
            sig_q = torch.exp(log_sig_q)
            mu_latent = pyro.sample(
                "mu_latent",
                fakes.nonreparameterized_normal,
                mu_q,
                sig_q,
                baseline=dict(use_decaying_avg_baseline=True))

            def obs_outer(i, x):
                pyro.map_data("map_obs_inner_%d" % i,
                              x,
                              lambda _i, _x: None,
                              batch_size=3)

            pyro.map_data("map_obs_outer",
                          self.data,
                          lambda i, x: obs_outer(i, x),
                          batch_size=3)

            return mu_latent
Exemple #3
0
 def guide():
     mu_q = pyro.param(
         "mu_q",
         Variable(analytic_mu_n.data + torch.Tensor([-0.18, 0.23]),
                  requires_grad=True))
     log_sig_q = pyro.param(
         "log_sig_q",
         Variable(analytic_log_sig_n.data - torch.Tensor([-0.18, 0.23]),
                  requires_grad=True))
     sig_q = torch.exp(log_sig_q)
     pyro.sample("mu_latent", dist.normal, mu_q, sig_q)
     if map_type == "list" or map_type is None:
         pyro.map_data("aaa",
                       data,
                       lambda i, x: None,
                       batch_size=batch_size)
     elif map_type == "tensor":
         tdata = torch.cat([xi.view(1, -1) for xi in data], 0)
         # dummy map_data to do subsampling for observe
         pyro.map_data("aaa",
                       tdata,
                       lambda i, x: None,
                       batch_size=batch_size)
     else:
         pass
Exemple #4
0
        def model():
            mu_latent = pyro.sample("mu_latent",
                                    fakes.nonreparameterized_normal, self.mu0,
                                    torch.pow(self.lam0, -0.5))

            def obs_inner(i, _i, _x):
                for k in range(n_superfluous_top):
                    pyro.sample("z_%d_%d" % (i, k),
                                fakes.nonreparameterized_normal,
                                ng_zeros(4 - i, 1), ng_ones(4 - i, 1))
                pyro.observe("obs_%d" % i, dist.normal, _x, mu_latent,
                             torch.pow(self.lam, -0.5))
                for k in range(n_superfluous_top,
                               n_superfluous_top + n_superfluous_bottom):
                    pyro.sample("z_%d_%d" % (i, k),
                                fakes.nonreparameterized_normal,
                                ng_zeros(4 - i, 1), ng_ones(4 - i, 1))

            def obs_outer(i, x):
                pyro.map_data("map_obs_inner_%d" % i,
                              x,
                              lambda _i, _x: obs_inner(i, _i, _x),
                              batch_size=4 - i)

            pyro.map_data("map_obs_outer", [
                self.data_tensor[0:4, :], self.data_tensor[4:7, :],
                self.data_tensor[7:9, :]
            ],
                          lambda i, x: obs_outer(i, x),
                          batch_size=3)

            return mu_latent
Exemple #5
0
 def model():
     p_latent = pyro.sample("p_latent", dist.beta, self.alpha0, self.beta0)
     pyro.map_data("aaa",
                   self.data, lambda i, x: pyro.observe(
                       "obs_{}".format(i), dist.bernoulli, x, p_latent),
                   batch_size=self.batch_size)
     return p_latent
Exemple #6
0
 def model():
     p_latent = pyro.sample("p_latent", Beta(self.alpha0, self.beta0))
     x_dist = Bernoulli(p_latent)
     pyro.map_data(self.data,
                   lambda i, x: pyro.observe("obs", x_dist, x),
                   batch_size=2)
     return p_latent
Exemple #7
0
def map_data_vector_cuda_model(subsample_size):
    mu = Variable(torch.zeros(20).cuda())
    sigma = Variable(torch.ones(20).cuda())
    pyro.map_data("data",
                  mu,
                  lambda i, mu: pyro.sample("x", dist.normal, mu, sigma[i]),
                  batch_size=subsample_size,
                  use_cuda=True)
Exemple #8
0
 def guide():
     alpha_q_log = pyro.param("alpha_q_log",
                              Variable(self.log_alpha_n.data + 0.17, requires_grad=True))
     beta_q_log = pyro.param("beta_q_log",
                             Variable(self.log_beta_n.data - 0.143, requires_grad=True))
     alpha_q, beta_q = torch.exp(alpha_q_log), torch.exp(beta_q_log)
     pyro.sample("p_latent", dist.beta, alpha_q, beta_q)
     pyro.map_data("aaa", self.data, lambda i, x: None, batch_size=self.batch_size)
Exemple #9
0
def map_data_iter_cuda_model(subsample_size):
    mu = Variable(torch.zeros(20).cuda())
    sigma = Variable(torch.ones(20).cuda())
    pyro.map_data(
        "data",
        list(mu),
        lambda i, mu: pyro.sample("x_{}".format(i), dist.normal, mu, sigma[i]),
        batch_size=subsample_size,
        use_cuda=True)
Exemple #10
0
 def model():
     lambda_latent = pyro.sample("lambda_latent",
                                 Gamma(self.alpha0, self.beta0))
     x_dist = Poisson(lambda_latent)
     # x0 = pyro.observe("obs0", x_dist, self.data[0])
     pyro.map_data(self.data,
                   lambda i, x: pyro.observe("obs", x_dist, x),
                   batch_size=3)
     return lambda_latent
Exemple #11
0
 def model():
     mu_latent = pyro.sample("mu_latent", dist.normal,
                             self.mu0, torch.pow(self.lam0, -0.5))
     pyro.map_data("aaa", self.data, lambda i,
                   x: pyro.observe(
                       "obs_%d" % i, dist.normal,
                       x, mu_latent, torch.pow(self.lam, -0.5)),
                   batch_size=self.batch_size)
     return mu_latent
Exemple #12
0
 def model():
     prior_dist = DiagNormal(self.mu0, torch.pow(self.lam0, -0.5))
     mu_latent = pyro.sample("mu_latent", prior_dist)
     x_dist = DiagNormal(mu_latent, torch.pow(self.lam, -0.5))
     # x = pyro.observe("obs", x_dist, self.data)
     pyro.map_data(self.data,
                   lambda i, x: pyro.observe("obs_%d" % i, x_dist, x),
                   batch_size=1)
     return mu_latent
Exemple #13
0
 def model(means, stds):
     return pyro.map_data("a", means,
                          lambda i, x:
                          pyro.map_data("a_{}".format(i), stds,
                                        lambda j, y:
                                        pyro.sample("x_{}{}".format(i, j),
                                                    dist.normal, x, y),
                                        batch_size=std_batch_size),
                          batch_size=mean_batch_size)
Exemple #14
0
 def guide():
     mu_q = pyro.param("mu_q", Variable(self.analytic_mu_n.data + 0.134 * torch.ones(2),
                                        requires_grad=True))
     log_sig_q = pyro.param("log_sig_q", Variable(
                            self.analytic_log_sig_n.data - 0.14 * torch.ones(2),
                            requires_grad=True))
     sig_q = torch.exp(log_sig_q)
     pyro.sample("mu_latent", dist.Normal(mu_q, sig_q, reparameterized=reparameterized))
     pyro.map_data("aaa", self.data, lambda i, x: None,
                   batch_size=self.batch_size)
Exemple #15
0
        def model(batch_size_outer=2, batch_size_inner=2):
            mu_latent = pyro.sample("mu_latent", dist.normal, ng_zeros(1), ng_ones(1))

            def outer(i, x):
                pyro.map_data("map_inner_%d" % i, x, lambda _i, _x:
                              inner(i, _i, _x), batch_size=batch_size_inner)

            def inner(i, _i, _x):
                pyro.sample("z_%d_%d" % (i, _i), dist.normal, mu_latent + _x, ng_ones(1))

            pyro.map_data("map_outer", [[ng_ones(1)] * 2] * 2, lambda i, x:
                          outer(i, x), batch_size=batch_size_outer)

            return mu_latent
Exemple #16
0
 def guide():
     mu_q = pyro.param(
         "mu_q",
         Variable(self.analytic_mu_n.data + 0.134 * torch.ones(2),
                  requires_grad=True))
     log_sig_q = pyro.param(
         "log_sig_q",
         Variable(self.analytic_log_sig_n.data - 0.09 * torch.ones(2),
                  requires_grad=True))
     sig_q = torch.exp(log_sig_q)
     q_dist = DiagNormal(mu_q, sig_q)
     q_dist.reparametrized = reparametrized
     pyro.sample("mu_latent", q_dist)
     pyro.map_data(self.data, lambda i, x: None, batch_size=1)
Exemple #17
0
        def model(batch_size_outer=2, batch_size_inner=2):
            mu_latent = pyro.sample("mu_latent", dist.normal, ng_zeros(1), ng_ones(1))

            def outer(i, x):
                pyro.map_data("map_inner_%d" % i, x, lambda _i, _x:
                              inner(i, _i, _x), batch_size=batch_size_inner)

            def inner(i, _i, _x):
                pyro.sample("z_%d_%d" % (i, _i), dist.normal, mu_latent + _x, ng_ones(1))

            pyro.map_data("map_outer", [[ng_ones(1)] * 2] * 2, lambda i, x:
                          outer(i, x), batch_size=batch_size_outer)

            return mu_latent
Exemple #18
0
        def model():
            mu_latent = pyro.sample(
                    "mu_latent",
                    dist.Normal(self.mu0, torch.pow(self.lam0, -0.5), reparameterized=False))

            def obs_outer(i, x):
                pyro.map_data("map_obs_inner_%d" % i, x, lambda _i, _x:
                              obs_inner(i, _i, _x), batch_size=3)

            def obs_inner(i, _i, _x):
                pyro.observe("obs_%d_%d" % (i, _i), dist.normal, _x, mu_latent,
                             torch.pow(self.lam, -0.5))

            pyro.map_data("map_obs_outer", self.data, lambda i, x:
                          obs_outer(i, x), batch_size=3)

            return mu_latent
Exemple #19
0
def map_data_iter_model(subsample_size):
    mu = Variable(torch.zeros(20))
    sigma = Variable(torch.ones(20))

    def local_model(i, unused):
        pyro.sample("x_{}".format(i), dist.normal, mu[i], sigma[i])
        return i

    return pyro.map_data('mapdata', range(20), local_model, batch_size=subsample_size)
        def guide():
            mu_q = pyro.param("mu_q", Variable(self.analytic_mu_n.data + 0.234 * torch.ones(2),
                                               requires_grad=True))
            log_sig_q = pyro.param("log_sig_q", Variable(
                                   self.analytic_log_sig_n.data - 0.27 * torch.ones(2),
                                   requires_grad=True))
            sig_q = torch.exp(log_sig_q)
            mu_latent = pyro.sample(
                    "mu_latent",
                    dist.Normal(mu_q, sig_q, reparameterized=False),
                    baseline=dict(use_decaying_avg_baseline=True))

            def obs_outer(i, x):
                pyro.map_data("map_obs_inner_%d" % i, x, lambda _i, _x:
                              None, batch_size=3)

            pyro.map_data("map_obs_outer", self.data, lambda i, x:
                          obs_outer(i, x), batch_size=3)

            return mu_latent
Exemple #21
0
 def model():
     mu_latent = pyro.sample("mu_latent", dist.normal,
                             mu0, torch.pow(lam0, -0.5))
     if map_type == "list":
         pyro.map_data("aaa", data, lambda i,
                       x: pyro.observe(
                           "obs_%d" % i, dist.normal,
                           x, mu_latent, torch.pow(lam, -0.5)), batch_size=batch_size)
     elif map_type == "tensor":
         tdata = torch.cat([xi.view(1, -1) for xi in data], 0)
         pyro.map_data("aaa", tdata,
                       # XXX get batch size args to dist right
                       lambda i, x: pyro.observe("obs", dist.normal, x, mu_latent,
                                                 torch.pow(lam, -0.5)),
                       batch_size=batch_size)
     else:
         for i, x in enumerate(data):
             pyro.observe('obs_%d' % i,
                          dist.normal, x, mu_latent, torch.pow(lam, -0.5))
     return mu_latent
Exemple #22
0
def map_data_vector_model(subsample_size):
    mu = Variable(torch.zeros(20))
    sigma = Variable(torch.ones(20))

    def local_model(batch, unused):
        pyro.sample("x", dist.normal, mu[batch], sigma[batch])
        return batch

    LongTensor = torch.cuda.LongTensor if torch.Tensor.is_cuda else torch.LongTensor
    ind = Variable(LongTensor(range(20)))
    batch = pyro.map_data('mapdata', ind, local_model, batch_size=subsample_size)
    return list(batch.data)
        def model():
            mu_latent = pyro.sample(
                    "mu_latent",
                    dist.Normal(self.mu0, torch.pow(self.lam0, -0.5), reparameterized=False))

            def obs_inner(i, _i, _x):
                for k in range(n_superfluous_top):
                    pyro.sample("z_%d_%d" % (i, k),
                                dist.Normal(ng_zeros(4 - i, 1), ng_ones(4 - i, 1), reparameterized=False))
                pyro.observe("obs_%d" % i, dist.normal, _x, mu_latent, torch.pow(self.lam, -0.5))
                for k in range(n_superfluous_top, n_superfluous_top + n_superfluous_bottom):
                    pyro.sample("z_%d_%d" % (i, k),
                                dist.Normal(ng_zeros(4 - i, 1), ng_ones(4 - i, 1), reparameterized=False))

            def obs_outer(i, x):
                pyro.map_data("map_obs_inner_%d" % i, x, lambda _i, _x:
                              obs_inner(i, _i, _x), batch_size=4 - i)

            pyro.map_data("map_obs_outer", [self.data_tensor[0:4, :], self.data_tensor[4:7, :],
                                            self.data_tensor[7:9, :]],
                          lambda i, x: obs_outer(i, x), batch_size=3)

            return mu_latent
Exemple #24
0
 def outer(i, x):
     pyro.map_data("map_inner_%d" % i, x, lambda _i, _x:
                   inner(i, _i, _x), batch_size=batch_size_inner)
Exemple #25
0
 def model():
     lambda_latent = pyro.sample("lambda_latent", dist.gamma, self.alpha0, self.beta0)
     pyro.map_data("aaa",
                   self.data, lambda i, x: pyro.observe(
                       "obs_{}".format(i), dist.poisson, x, lambda_latent), batch_size=3)
     return lambda_latent
Exemple #26
0
 def outer(i, x):
     pyro.map_data("map_inner_%d" % i,
                   x,
                   lambda _i, _x: inner(i, _i, _x),
                   batch_size=batch_size_inner)
 def obs_outer(i, x):
     pyro.map_data("map_obs_inner_%d" % i, x, lambda _i, _x:
                   None, batch_size=3)
Exemple #28
0
 def model():
     return pyro.map_data("md",
                          data,
                          local_model,
                          batch_size=1,
                          batch_dim=batch_dim)
Exemple #29
0
 def obs_outer(i, x):
     pyro.map_data("map_obs_inner_%d" % i,
                   x,
                   lambda _i, _x: obs_inner(i, _i, _x),
                   batch_size=4 - i)
Exemple #30
0
 def obs_outer(i, x):
     pyro.map_data("map_obs_inner_%d" % i,
                   x,
                   lambda _i, _x: None,
                   batch_size=3)
 def obs_outer(i, x):
     pyro.map_data("map_obs_inner_%d" % i, x, lambda _i, _x:
                   obs_inner(i, _i, _x), batch_size=4 - i)