Exemple #1
0
    def test_optimization(self):
        store_dir = self.get_pulse_store_dir()
        engine = gf.LocalEngine(store_dirs=[store_dir])

        sources = [
            gf.RectangularExplosionSource(time=0.0025,
                                          depth=depth,
                                          moment=1.0,
                                          length=100.,
                                          width=0.,
                                          nucleation_x=-1)
            for depth in [100., 200., 300.]
        ]

        targetss = [[
            gf.Target(codes=('', 'STA', opt, component),
                      north_shift=500.,
                      east_shift=125.,
                      depth=depth,
                      interpolation='multilinear',
                      optimization=opt) for component in 'ZNE'
            for depth in [0., 5., 10]
        ] for opt in ('disable', 'enable')]

        resps = [engine.process(sources, targets) for targets in targetss]

        iters = [resp.iter_results() for resp in resps]
        for i in xrange(len(sources) * len(targetss[0])):
            s1, t1, tr1 = iters[0].next()
            s2, t2, tr2 = iters[1].next()
            self.assertEqual(tr1.data_len(), tr2.data_len())
            self.assertEqual(tr1.tmin, tr2.tmin)
            self.assertTrue(numeq(tr1.ydata, tr2.ydata, 0.0001))
Exemple #2
0
inv_trans = ax.transData.inverted()

# set the bouding point relative to the plotted axis of the beachball
x0, y1 = inv_trans.transform(
    move_trans.transform(ax.transData.transform((x0, y1))))

# plot beachball
beachball.plot_beachball_mpl(source1.pyrocko_moment_tensor(),
                             ax,
                             beachball_type='full',
                             size=sz,
                             position=(x0, y1),
                             linewidth=1.)

# create source object
source2 = gf.RectangularExplosionSource(depth=35e3, strike=0., dip=90.)

# set size of beachball
sz = 30.
# set beachball offset in points (one point from each axis)
szpt = (sz / 2.) / 72. + 1. / 72.

# get the bounding point (right-upper)
x1 = ax.get_xlim()[1]
y1 = ax.get_ylim()[1]

# create a translation matrix, based on the final figure size and
# beachball location
move_trans = transforms.ScaledTranslation(-szpt, -szpt, fig.dpi_scale_trans)

# get the inverse matrix for the axis where the beachball will be plotted