def invert(self, args): align_phase = 'P' ampl_scaler = '4*standard deviation' for array_id in self.provider.use: try: if args.array_id and array_id != args.array_id: continue except AttributeError: pass subdir = pjoin('array_data', array_id) settings_fn = pjoin(subdir, 'plot_settings.yaml') if os.path.isfile(settings_fn): settings = PlotSettings.load(filename=pjoin(settings_fn)) settings.update_from_args(self.args) else: logger.warn('no settings found: %s' % array_id) continue if settings.store_superdirs: engine = LocalEngine(store_superdirs=settings.store_superdirs) else: engine = LocalEngine(use_config=True) try: store = engine.get_store(settings.store_id) except seismosizer.NoSuchStore as e: logger.info('%s ... skipping.' % e) return try: store = engine.get_store(settings.store_id) except seismosizer.NoSuchStore as e: logger.info('%s ... skipping.' % e) return if not settings.trace_filename: settings.trace_filename = pjoin(subdir, 'beam.mseed') if not settings.station_filename: settings.station_filename = pjoin(subdir, 'array_center.pf') zoom_window = settings.zoom mod = store.config.earthmodel_1d zstart, zstop, inkr = settings.depths.split(':') test_depths = num.arange( float(zstart) * km, float(zstop) * km, float(inkr) * km) traces = io.load(settings.trace_filename) event = model.load_events(settings.event_filename) assert len(event) == 1 event = event[0] event.depth = float(settings.depth) * 1000. base_source = MTSource.from_pyrocko_event(event) test_sources = [] for d in test_depths: s = base_source.clone() s.depth = float(d) test_sources.append(s) stations = model.load_stations(settings.station_filename) station = filter( lambda s: match_nslc('%s.%s.%s.*' % s.nsl(), traces[0].nslc_id ), stations) if len(station) != 1: logger.error('no matching stations found. %s %s' % []) else: station = station[0] targets = [ station_to_target(station, quantity=settings.quantity, store_id=settings.store_id) ] try: request = engine.process(targets=targets, sources=test_sources) except seismosizer.NoSuchStore as e: logger.info('%s ... skipping.' % e) return except meta.OutOfBounds as error: if settings.force_nearest_neighbor: logger.warning('%s Using nearest neighbor instead.' % error) mod_targets = [] for t in targets: closest_source = min(test_sources, key=lambda s: s.distance_to(t)) farthest_source = max(test_sources, key=lambda s: s.distance_to(t)) min_dist_delta = store.config.distance_min - closest_source.distance_to( t) max_dist_delta = store.config.distance_max - farthest_source.distance_to( t) if min_dist_delta < 0: azi, bazi = closest_source.azibazi_to(t) newlat, newlon = ortho.azidist_to_latlon( t.lat, t.lon, azi, min_dist_delta * cake.m2d) elif max_dist_delta < 0: azi, bazi = farthest_source.azibazi_to(t) newlat, newlon = ortho.azidist_to_latlon( t.lat, t.lon, azi, max_dist_delta * cake.m2d) t.lat, t.lon = newlat, newlon mod_targets.append(t) request = engine.process(targets=mod_targets, sources=test_sources) else: raise error candidates = [] for s, t, tr in request.iter_results(): tr.deltat = regularize_float(tr.deltat) if True: tr = integrate_differentiate(tr, 'differentiate') tr = settings.do_filter(tr) candidates.append((s, tr)) assert len(traces) == 1 ref = traces[0] ref = settings.do_filter(ref) dist = ortho.distance_accurate50m(event, station) tstart = self.provider.timings[array_id].timings[0].t( mod, (event.depth, dist)) + event.time tend = self.provider.timings[array_id].timings[1].t( mod, (event.depth, dist)) + event.time ref = ref.chop(tstart, tend) misfits = [] center_freqs = num.arange(1., 9., 4.) num_f_widths = len(center_freqs) mesh_fc = num.zeros( len(center_freqs) * num_f_widths * len(candidates)) mesh_fwidth = num.zeros( len(center_freqs) * num_f_widths * len(candidates)) misfits_array = num.zeros( (len(center_freqs), num_f_widths, len(candidates))) depths_array = num.zeros( (len(center_freqs), num_f_widths, len(candidates))) debug = False pb = ProgressBar(maxval=max(center_freqs)).start() i = 0 for i_fc, fc in enumerate(center_freqs): if debug: fig = plt.figure() fl_min = fc - fc * 2. / 5. fr_max = fc + fc * 2. / 5. widths = num.linspace(fl_min, fr_max, num_f_widths) for i_width, width in enumerate(widths): i_candidate = 0 mesh_fc[i] = fc mesh_fwidth[i] = width i += 1 for source, candidate in candidates: candidate = candidate.copy() tstart = self.provider.timings[array_id].timings[0].t( mod, (source.depth, dist)) + event.time tend = self.provider.timings[array_id].timings[1].t( mod, (source.depth, dist)) + event.time filters = [ ButterworthResponse(corner=float(fc + width * 0.5), order=4, type='low'), ButterworthResponse(corner=float(fc - width * 0.5), order=4, type='high') ] settings.filters = filters candidate = settings.do_filter(candidate) candidate.chop(tmin=tstart, tmax=tend) candidate.shift(float(settings.correction)) m, n, aproc, bproc = ref.misfit( candidate=candidate, setup=settings.misfit_setup, debug=True) aproc.set_codes(station='aproc') bproc.set_codes(station='bproc') if debug: ax = fig.add_subplot( len(test_depths) + 1, 1, i + 1) ax.plot(aproc.get_xdata(), aproc.get_ydata()) ax.plot(bproc.get_xdata(), bproc.get_ydata()) mf = m / n #misfits.append((source.depth, mf)) misfits_array[i_fc][i_width][i_candidate] = mf i_candidate += 1 pb.update(fc) pb.finish() fig = plt.figure() ax = fig.add_subplot(111) i_best_fits = num.argmin(misfits_array, 2) print('best fits: \n', i_best_fits) best_fits = num.min(misfits_array, 2) #cmap = matplotlib.cm.get_cmap() xmesh, ymesh = num.meshgrid(mesh_fc, mesh_fwidth) #c = (best_fits-num.min(best_fits))/(num.max(best_fits)-num.min(best_fits)) ax.scatter(xmesh, ymesh, best_fits * 100) #ax.scatter(mesh_fc, mesh_fwidth, c) #ax.scatter(mesh_fc, mesh_fwidth, s=best_fits) ax.set_xlabel('fc') ax.set_ylabel('f_width') plt.legend() plt.show()
def plot(settings, show=False): #align_phase = 'P(cmb)P<(icb)(cmb)p' with_onset_line = False fill = True align_phase = 'P' zoom_window = settings.zoom ampl_scaler = '4*standard deviation' quantity = settings.quantity zstart, zstop, inkr = settings.depths.split(':') test_depths = num.arange( float(zstart) * km, float(zstop) * km, float(inkr) * km) try: traces = io.load(settings.trace_filename) except FileLoadError as e: logger.info(e) return event = model.load_events(settings.event_filename) assert len(event) == 1 event = event[0] event.depth = float(settings.depth) * 1000. base_source = MTSource.from_pyrocko_event(event) test_sources = [] for d in test_depths: s = base_source.clone() s.depth = float(d) test_sources.append(s) if settings.store_superdirs: engine = LocalEngine(store_superdirs=settings.store_superdirs) else: engine = LocalEngine(use_config=True) try: store = engine.get_store(settings.store_id) except seismosizer.NoSuchStore as e: logger.info('%s ... skipping.' % e) return stations = model.load_stations(settings.station_filename) station = filter( lambda s: match_nslc('%s.%s.%s.*' % s.nsl(), traces[0].nslc_id), stations) assert len(station) == 1 station = station[0] targets = [ station_to_target(station, quantity=quantity, store_id=settings.store_id) ] try: request = engine.process(targets=targets, sources=test_sources) except seismosizer.NoSuchStore as e: logger.info('%s ... skipping.' % e) return except meta.OutOfBounds as error: if settings.force_nearest_neighbor: logger.warning('%s Using nearest neighbor instead.' % error) mod_targets = [] for t in targets: closest_source = min(test_sources, key=lambda s: s.distance_to(t)) farthest_source = max(test_sources, key=lambda s: s.distance_to(t)) min_dist_delta = store.config.distance_min - closest_source.distance_to( t) max_dist_delta = store.config.distance_max - farthest_source.distance_to( t) if min_dist_delta < 0: azi, bazi = closest_source.azibazi_to(t) newlat, newlon = ortho.azidist_to_latlon( t.lat, t.lon, azi, min_dist_delta * cake.m2d) elif max_dist_delta < 0: azi, bazi = farthest_source.azibazi_to(t) newlat, newlon = ortho.azidist_to_latlon( t.lat, t.lon, azi, max_dist_delta * cake.m2d) t.lat, t.lon = newlat, newlon mod_targets.append(t) request = engine.process(targets=mod_targets, sources=test_sources) else: logger.error("%s: %s" % (error, ".".join(station.nsl()))) return alldepths = list(test_depths) depth_count = dict(zip(sorted(alldepths), range(len(alldepths)))) target_count = dict( zip([t.codes[:3] for t in targets], range(len(targets)))) fig = plt.figure() ax = fig.add_subplot(111) maxz = max(test_depths) minz = min(test_depths) relative_scale = (maxz - minz) * 0.02 for s, t, tr in request.iter_results(): if quantity == 'velocity': tr = integrate_differentiate(tr, 'differentiate') onset = engine.get_store(t.store_id).t('begin', (s.depth, s.distance_to(t))) tr = settings.do_filter(tr) if settings.normalize: tr.set_ydata(tr.get_ydata() / num.max(abs(tr.get_ydata()))) ax.tick_params(axis='y', which='both', left='off', right='off', labelleft='off') y_pos = s.depth xdata = tr.get_xdata() - onset - s.time tr_ydata = tr.get_ydata() * -1 visible = tr.chop(tmin=event.time + onset + zoom_window[0], tmax=event.time + onset + zoom_window[1]) if ampl_scaler == 'trace min/max': ampl_scale = float(max(abs(visible.get_ydata()))) elif ampl_scaler == '4*standard deviation': ampl_scale = 4 * float(num.std(visible.get_ydata())) else: ampl_scale = 1. ampl_scale /= settings.gain ydata = (tr_ydata / ampl_scale) * relative_scale + y_pos ax.plot(xdata, ydata, c='black', linewidth=1., alpha=1.) if False: ax.fill_between(xdata, y_pos, ydata, where=ydata < y_pos, color='black', alpha=0.5) ax.text(zoom_window[0] * 1.09, y_pos, '%1.1f' % (s.depth / 1000.), horizontalalignment='right') #, fontsize=12.) if False: mod = store.config.earthmodel_1d label = 'pP' arrivals = mod.arrivals(phases=[cake.PhaseDef(label)], distances=[s.distance_to(t) * cake.m2d], zstart=s.depth) try: t = arrivals[0].t ydata_absmax = num.max(num.abs(tr.get_ydata())) marker_length = 0.5 x_marker = [t - onset] * 2 y = [ y_pos - (maxz - minz) * 0.025, y_pos + (maxz - minz) * 0.025 ] ax.plot(x_marker, y, linewidth=1, c='blue') ax.text( x_marker[1] - x_marker[1] * 0.005, y[1], label, #fontsize=12, color='black', verticalalignment='top', horizontalalignment='right') except IndexError: logger.warning( 'no pP phase at d=%s z=%s stat=%s' % (s.distance_to(t) * cake.m2d, s.depth, station.station)) pass if len(traces) == 0: raise Exception('No Trace found!') if len(traces) > 1: raise Exception('More then one trace provided!') else: onset = 0 tr = traces[0] correction = float(settings.correction) if quantity == 'displacement': tr = integrate_differentiate(tr, 'integrate') tr = settings.do_filter(tr) onset = engine.get_store(targets[0].store_id).t( 'begin', (event.depth, s.distance_to(targets[0]))) + event.time if settings.normalize: tr.set_ydata(tr.get_ydata() / max(abs(tr.get_ydata()))) ax.tick_params(axis='y', which='both', left='off', right='off', labelleft='off') y_pos = event.depth xdata = tr.get_xdata() - onset + correction tr_ydata = tr.get_ydata() * -1 visible = tr.chop(tmin=onset + zoom_window[0] + correction, tmax=onset + zoom_window[1] + correction) if ampl_scaler == 'trace min/max': ampl_scale = float(max(abs(visible.get_ydata()))) elif ampl_scaler == '4*standard deviation': ampl_scale = 4 * float(num.std(visible.get_ydata())) else: ampl_scale = 1. ydata = (tr_ydata / ampl_scale * settings.gain * settings.gain_record) * relative_scale + y_pos ax.plot(xdata, ydata, c=settings.color, linewidth=1.) ax.set_xlim(zoom_window) zmax = max(test_depths) zmin = min(test_depths) zrange = zmax - zmin ax.set_ylim((zmin - zrange * 0.2, zmax + zrange * 0.2)) ax.set_xlabel('Time [s]') ax.text(0.0, 0.6, 'Source depth [km]', rotation=90, horizontalalignment='left', transform=fig.transFigure) #, fontsize=12.) if fill: ax.fill_between(xdata, y_pos, ydata, where=ydata < y_pos, color=settings.color, alpha=0.5) if with_onset_line: ax.text(0.08, zmax + zrange * 0.1, align_phase, fontsize=14) vline = ax.axvline(0., c='black') vline.set_linestyle('--') if settings.title: params = { 'array-id': ''.join(station.nsl()), 'event_name': event.name, 'event_time': time_to_str(event.time) } ax.text(0.5, 1.05, settings.title % params, horizontalalignment='center', transform=ax.transAxes) if settings.auto_caption: cax = fig.add_axes([0., 0., 1, 0.05], label='caption') cax.axis('off') cax.xaxis.set_visible(False) cax.yaxis.set_visible(False) if settings.quantity == 'displacement': quantity_info = 'integrated velocity trace. ' if settings.quantity == 'velocity': quantity_info = 'differentiated synthetic traces. ' if settings.quantity == 'restituted': quantity_info = 'restituted traces. ' captions = {'filters': ''} for f in settings.filters: captions['filters'] += '%s-pass, order %s, f$_c$=%s Hz. ' % ( f.type, f.order, f.corner) captions['quantity_info'] = quantity_info captions['store_sampling'] = 1. / store.config.deltat cax.text( 0, 0, 'Filters: %(filters)s f$_{GF}$=%(store_sampling)s Hz.\n%(quantity_info)s' % captions, fontsize=12, transform=cax.transAxes) plt.subplots_adjust(hspace=.4, bottom=0.15) else: plt.subplots_adjust(bottom=0.1) ax.invert_yaxis() if settings.save_as: logger.info('save as: %s ' % settings.save_as) options = settings.__dict__ options.update({'array-id': ''.join(station.nsl())}) fig.savefig(settings.save_as % options, dpi=160, bbox_inches='tight') if show: plt.show()
def plot(settings, show=False): # align_phase = 'P(cmb)P<(icb)(cmb)p' with_onset_line = False fill = True align_phase = "P" zoom_window = list(settings.zoom) ampl_scaler = "4*standard deviation" quantity = settings.quantity zstart, zstop, inkr = settings.depths.split(":") test_depths = num.arange( float(zstart) * km, float(zstop) * km, float(inkr) * km) try: traces = io.load(settings.trace_filename) except FileLoadError as e: logger.info(e) return event = model.load_events(settings.event_filename) assert len(event) == 1 event = event[0] event.depth = float(settings.depth) * 1000.0 base_source = MTSource.from_pyrocko_event(event) test_sources = [] for d in test_depths: s = base_source.clone() s.depth = float(d) test_sources.append(s) if settings.store_superdirs: engine = LocalEngine(store_superdirs=settings.store_superdirs) else: engine = LocalEngine(use_config=True) try: store = engine.get_store(settings.store_id) except seismosizer.NoSuchStore as e: logger.info("%s ... skipping." % e) return stations = model.load_stations(settings.station_filename) station = list( filter(lambda s: match_nslc("%s.%s.%s.*" % s.nsl(), traces[0].nslc_id), stations)) assert len(station) == 1 station = station[0] targets = [ station_to_target(station, quantity=quantity, store_id=settings.store_id) ] try: request = engine.process(targets=targets, sources=test_sources) except seismosizer.NoSuchStore as e: logger.info("%s ... skipping." % e) return except meta.OutOfBounds as error: if settings.force_nearest_neighbor: logger.warning("%s Using nearest neighbor instead." % error) mod_targets = [] for t in targets: closest_source = min(test_sources, key=lambda s: s.distance_to(t)) farthest_source = max(test_sources, key=lambda s: s.distance_to(t)) min_dist_delta = store.config.distance_min - closest_source.distance_to( t) max_dist_delta = (store.config.distance_max - farthest_source.distance_to(t)) if min_dist_delta < 0: azi, bazi = closest_source.azibazi_to(t) newlat, newlon = ortho.azidist_to_latlon( t.lat, t.lon, azi, min_dist_delta * cake.m2d) elif max_dist_delta < 0: azi, bazi = farthest_source.azibazi_to(t) newlat, newlon = ortho.azidist_to_latlon( t.lat, t.lon, azi, max_dist_delta * cake.m2d) t.lat, t.lon = newlat, newlon mod_targets.append(t) request = engine.process(targets=mod_targets, sources=test_sources) else: logger.error("%s: %s" % (error, ".".join(station.nsl()))) return alldepths = list(test_depths) fig = plt.figure() ax = fig.add_subplot(111) maxz = max(test_depths) minz = min(test_depths) relative_scale = (maxz - minz) * 0.02 for s, t, tr in request.iter_results(): if quantity == "velocity": tr = integrate_differentiate(tr, "differentiate") onset = engine.get_store(t.store_id).t("begin", (s.depth, s.distance_to(t))) tr = settings.do_filter(tr) if settings.normalize: tr.set_ydata(tr.get_ydata() / num.max(abs(tr.get_ydata()))) ax.tick_params(axis="y", which="both", left="off", right="off", labelleft="off") y_pos = s.depth xdata = tr.get_xdata() - onset - s.time tr_ydata = tr.get_ydata() * -1 visible = tr.chop( tmin=event.time + onset + zoom_window[0], tmax=event.time + onset + zoom_window[1], ) if ampl_scaler == "trace min/max": ampl_scale = float(max(abs(visible.get_ydata()))) elif ampl_scaler == "4*standard deviation": ampl_scale = 4 * float(num.std(visible.get_ydata())) else: ampl_scale = 1.0 ampl_scale /= settings.gain ydata = (tr_ydata / ampl_scale) * relative_scale + y_pos ax.plot(xdata, ydata, c="black", linewidth=1.0, alpha=1.0) if False: ax.fill_between(xdata, y_pos, ydata, where=ydata < y_pos, color="black", alpha=0.5) ax.text( zoom_window[0] * 1.09, y_pos, "%1.1f" % (s.depth / 1000.0), horizontalalignment="right", ) # , fontsize=12.) if False: mod = store.config.earthmodel_1d label = "pP" arrivals = mod.arrivals( phases=[cake.PhaseDef(label)], distances=[s.distance_to(t) * cake.m2d], zstart=s.depth, ) try: t = arrivals[0].t ydata_absmax = num.max(num.abs(tr.get_ydata())) marker_length = 0.5 x_marker = [t - onset] * 2 y = [ y_pos - (maxz - minz) * 0.025, y_pos + (maxz - minz) * 0.025 ] ax.plot(x_marker, y, linewidth=1, c="blue") ax.text( x_marker[1] - x_marker[1] * 0.005, y[1], label, # fontsize=12, color="black", verticalalignment="top", horizontalalignment="right", ) except IndexError: logger.warning( "no pP phase at d=%s z=%s stat=%s" % (s.distance_to(t) * cake.m2d, s.depth, station.station)) pass if len(traces) == 0: raise Exception("No Trace found!") if len(traces) > 1: raise Exception("More then one trace provided!") else: tr = traces[0] correction = float(settings.correction) if quantity == "displacement": tr = integrate_differentiate(tr, "integrate") tr = settings.do_filter(tr) onset = (engine.get_store(targets[0].store_id).t( "begin", (event.depth, s.distance_to(targets[0]))) + event.time) if settings.normalize: tr.set_ydata(tr.get_ydata() / max(abs(tr.get_ydata()))) ax.tick_params(axis="y", which="both", left="off", right="off", labelleft="off") y_pos = event.depth xdata = tr.get_xdata() - onset + correction tr_ydata = tr.get_ydata() * -1 visible = tr.chop( tmin=onset + zoom_window[0] + correction, tmax=onset + zoom_window[1] + correction, ) if ampl_scaler == "trace min/max": ampl_scale = float(max(abs(visible.get_ydata()))) elif ampl_scaler == "4*standard deviation": ampl_scale = 4 * float(num.std(visible.get_ydata())) else: ampl_scale = 1.0 ydata = (tr_ydata / ampl_scale * settings.gain * settings.gain_record) * relative_scale + y_pos ax.plot(xdata, ydata, c=settings.color, linewidth=1.0) ax.set_xlim(zoom_window) zmax = max(test_depths) zmin = min(test_depths) zrange = zmax - zmin ax.set_ylim((zmin - zrange * 0.2, zmax + zrange * 0.2)) ax.set_xlabel("Time [s]") ax.text( 0.0, 0.6, "Source depth [km]", rotation=90, horizontalalignment="left", transform=fig.transFigure, ) # , fontsize=12.) if fill: ax.fill_between(xdata, y_pos, ydata, where=ydata < y_pos, color=settings.color, alpha=0.5) if with_onset_line: ax.text(0.08, zmax + zrange * 0.1, align_phase, fontsize=14) vline = ax.axvline(0.0, c="black") vline.set_linestyle("--") if settings.title: params = { "array-id": "".join(station.nsl()), "event_name": event.name, "event_time": time_to_str(event.time), } ax.text( 0.5, 1.05, settings.title % params, horizontalalignment="center", transform=ax.transAxes, ) if settings.auto_caption: cax = fig.add_axes([0.0, 0.0, 1, 0.05], label="caption") cax.axis("off") cax.xaxis.set_visible(False) cax.yaxis.set_visible(False) if settings.quantity == "displacement": quantity_info = "integrated velocity trace. " if settings.quantity == "velocity": quantity_info = "differentiated synthetic traces. " if settings.quantity == "restituted": quantity_info = "restituted traces. " captions = {"filters": ""} for f in settings.filters: captions["filters"] += "%s-pass, order %s, f$_c$=%s Hz. " % ( f.type, f.order, f.corner, ) captions["quantity_info"] = quantity_info captions["store_sampling"] = 1.0 / store.config.deltat cax.text( 0, 0, "Filters: %(filters)s f$_{GF}$=%(store_sampling)s Hz.\n%(quantity_info)s" % captions, fontsize=12, transform=cax.transAxes, ) plt.subplots_adjust(hspace=0.4, bottom=0.15) else: plt.subplots_adjust(bottom=0.1) ax.invert_yaxis() if settings.save_as: logger.info("save as: %s " % settings.save_as) options = settings.__dict__ options.update({"array-id": "".join(station.nsl())}) fig.savefig(settings.save_as % options, dpi=160, bbox_inches="tight") if show: plt.show()
def invert(self, args): align_phase = 'P' ampl_scaler = '4*standard deviation' for array_id in self.provider.use: try: if args.array_id and array_id != args.array_id: continue except AttributeError: pass subdir = pjoin('array_data', array_id) settings_fn = pjoin(subdir, 'plot_settings.yaml') if os.path.isfile(settings_fn): settings = PlotSettings.load(filename=pjoin(settings_fn)) settings.update_from_args(self.args) else: logger.warn('no settings found: %s' % array_id) continue if settings.store_superdirs: engine = LocalEngine(store_superdirs=settings.store_superdirs) else: engine = LocalEngine(use_config=True) try: store = engine.get_store(settings.store_id) except seismosizer.NoSuchStore as e: logger.info('%s ... skipping.' % e) return try: store = engine.get_store(settings.store_id) except seismosizer.NoSuchStore as e: logger.info('%s ... skipping.' % e) return if not settings.trace_filename: settings.trace_filename = pjoin(subdir, 'beam.mseed') if not settings.station_filename: settings.station_filename = pjoin(subdir, 'array_center.pf') zoom_window = settings.zoom mod = store.config.earthmodel_1d zstart, zstop, inkr = settings.depths.split(':') test_depths = num.arange(float(zstart)*km, float(zstop)*km, float(inkr)*km) traces = io.load(settings.trace_filename) event = model.load_events(settings.event_filename) assert len(event)==1 event = event[0] event.depth = float(settings.depth) * 1000. base_source = MTSource.from_pyrocko_event(event) test_sources = [] for d in test_depths: s = base_source.clone() s.depth = float(d) test_sources.append(s) stations = model.load_stations(settings.station_filename) station = filter(lambda s: match_nslc('%s.%s.%s.*' % s.nsl(), traces[0].nslc_id), stations) if len(station) != 1: logger.error('no matching stations found. %s %s' % []) else: station = station[0] targets = [station_to_target(station, quantity=settings.quantity, store_id=settings.store_id)] try: request = engine.process(targets=targets, sources=test_sources) except seismosizer.NoSuchStore as e: logger.info('%s ... skipping.' % e) return except meta.OutOfBounds as error: if settings.force_nearest_neighbor: logger.warning('%s Using nearest neighbor instead.' % error) mod_targets = [] for t in targets: closest_source = min(test_sources, key=lambda s: s.distance_to(t)) farthest_source = max(test_sources, key=lambda s: s.distance_to(t)) min_dist_delta = store.config.distance_min - closest_source.distance_to(t) max_dist_delta = store.config.distance_max - farthest_source.distance_to(t) if min_dist_delta < 0: azi, bazi = closest_source.azibazi_to(t) newlat, newlon = ortho.azidist_to_latlon(t.lat, t.lon, azi, min_dist_delta*cake.m2d) elif max_dist_delta < 0: azi, bazi = farthest_source.azibazi_to(t) newlat, newlon = ortho.azidist_to_latlon(t.lat, t.lon, azi, max_dist_delta*cake.m2d) t.lat, t.lon = newlat, newlon mod_targets.append(t) request = engine.process(targets=mod_targets, sources=test_sources) else: raise error candidates = [] for s, t, tr in request.iter_results(): tr.deltat = regularize_float(tr.deltat) if True: tr = integrate_differentiate(tr, 'differentiate') tr = settings.do_filter(tr) candidates.append((s, tr)) assert len(traces)==1 ref = traces[0] ref = settings.do_filter(ref) dist = ortho.distance_accurate50m(event, station) tstart = self.provider.timings[array_id].timings[0].t(mod, (event.depth, dist)) + event.time tend = self.provider.timings[array_id].timings[1].t(mod, (event.depth, dist)) + event.time ref = ref.chop(tstart, tend) misfits = [] center_freqs = num.arange(1., 9., 4.) num_f_widths = len(center_freqs) mesh_fc = num.zeros(len(center_freqs)*num_f_widths*len(candidates)) mesh_fwidth = num.zeros(len(center_freqs)*num_f_widths*len(candidates)) misfits_array = num.zeros((len(center_freqs), num_f_widths, len(candidates))) depths_array = num.zeros((len(center_freqs), num_f_widths, len(candidates))) debug = False pb = ProgressBar(maxval=max(center_freqs)).start() i = 0 for i_fc, fc in enumerate(center_freqs): if debug: fig = plt.figure() fl_min = fc-fc*2./5. fr_max = fc+fc*2./5. widths = num.linspace(fl_min, fr_max, num_f_widths) for i_width, width in enumerate(widths): i_candidate = 0 mesh_fc[i] = fc mesh_fwidth[i] = width i += 1 for source, candidate in candidates: candidate = candidate.copy() tstart = self.provider.timings[array_id].timings[0].t(mod, (source.depth, dist)) + event.time tend = self.provider.timings[array_id].timings[1].t(mod, (source.depth, dist)) + event.time filters = [ ButterworthResponse(corner=float(fc+width*0.5), order=4, type='low'), ButterworthResponse(corner=float(fc-width*0.5), order=4, type='high')] settings.filters = filters candidate = settings.do_filter(candidate) candidate.chop(tmin=tstart, tmax=tend) candidate.shift(float(settings.correction)) m, n, aproc, bproc = ref.misfit(candidate=candidate, setup=settings.misfit_setup, debug=True) aproc.set_codes(station='aproc') bproc.set_codes(station='bproc') if debug: ax = fig.add_subplot(len(test_depths)+1, 1, i+1) ax.plot(aproc.get_xdata(), aproc.get_ydata()) ax.plot(bproc.get_xdata(), bproc.get_ydata()) mf = m/n #misfits.append((source.depth, mf)) misfits_array[i_fc][i_width][i_candidate] = mf i_candidate += 1 pb.update(fc) pb.finish() fig = plt.figure() ax = fig.add_subplot(111) i_best_fits = num.argmin(misfits_array, 2) print 'best fits: \n', i_best_fits best_fits = num.min(misfits_array, 2) #cmap = matplotlib.cm.get_cmap() xmesh, ymesh = num.meshgrid(mesh_fc, mesh_fwidth) #c = (best_fits-num.min(best_fits))/(num.max(best_fits)-num.min(best_fits)) ax.scatter(xmesh, ymesh, best_fits*100) #ax.scatter(mesh_fc, mesh_fwidth, c) #ax.scatter(mesh_fc, mesh_fwidth, s=best_fits) ax.set_xlabel('fc') ax.set_ylabel('f_width') plt.legend() plt.show()
def plot(settings, show=False): #align_phase = 'P(cmb)P<(icb)(cmb)p' with_onset_line = False fill = True align_phase = 'P' zoom_window = settings.zoom ampl_scaler = '4*standard deviation' quantity = settings.quantity zstart, zstop, inkr = settings.depths.split(':') test_depths = num.arange(float(zstart)*km, float(zstop)*km, float(inkr)*km) try: traces = io.load(settings.trace_filename) except FileLoadError as e: logger.info(e) return event = model.load_events(settings.event_filename) assert len(event)==1 event = event[0] event.depth = float(settings.depth) * 1000. base_source = MTSource.from_pyrocko_event(event) test_sources = [] for d in test_depths: s = base_source.clone() s.depth = float(d) test_sources.append(s) if settings.store_superdirs: engine = LocalEngine(store_superdirs=settings.store_superdirs) else: engine = LocalEngine(use_config=True) try: store = engine.get_store(settings.store_id) except seismosizer.NoSuchStore as e: logger.info('%s ... skipping.' % e) return stations = model.load_stations(settings.station_filename) station = filter(lambda s: match_nslc('%s.%s.%s.*' % s.nsl(), traces[0].nslc_id), stations) assert len(station) == 1 station = station[0] targets = [station_to_target(station, quantity=quantity, store_id=settings.store_id)] try: request = engine.process(targets=targets, sources=test_sources) except seismosizer.NoSuchStore as e: logger.info('%s ... skipping.' % e) return except meta.OutOfBounds as error: if settings.force_nearest_neighbor: logger.warning('%s Using nearest neighbor instead.' % error) mod_targets = [] for t in targets: closest_source = min(test_sources, key=lambda s: s.distance_to(t)) farthest_source = max(test_sources, key=lambda s: s.distance_to(t)) min_dist_delta = store.config.distance_min - closest_source.distance_to(t) max_dist_delta = store.config.distance_max - farthest_source.distance_to(t) if min_dist_delta < 0: azi, bazi = closest_source.azibazi_to(t) newlat, newlon = ortho.azidist_to_latlon(t.lat, t.lon, azi, min_dist_delta*cake.m2d) elif max_dist_delta < 0: azi, bazi = farthest_source.azibazi_to(t) newlat, newlon = ortho.azidist_to_latlon(t.lat, t.lon, azi, max_dist_delta*cake.m2d) t.lat, t.lon = newlat, newlon mod_targets.append(t) request = engine.process(targets=mod_targets, sources=test_sources) else: logger.error("%s: %s" % (error, ".".join(station.nsl()))) return alldepths = list(test_depths) depth_count = dict(zip(sorted(alldepths), range(len(alldepths)))) target_count = dict(zip([t.codes[:3] for t in targets], range(len(targets)))) fig = plt.figure() ax = fig.add_subplot(111) maxz = max(test_depths) minz = min(test_depths) relative_scale = (maxz-minz)*0.02 for s, t, tr in request.iter_results(): if quantity=='velocity': tr = integrate_differentiate(tr, 'differentiate') onset = engine.get_store(t.store_id).t( 'begin', (s.depth, s.distance_to(t))) tr = settings.do_filter(tr) if settings.normalize: tr.set_ydata(tr.get_ydata()/num.max(abs(tr.get_ydata()))) ax.tick_params(axis='y', which='both', left='off', right='off', labelleft='off') y_pos = s.depth xdata = tr.get_xdata()-onset-s.time tr_ydata = tr.get_ydata() * -1 visible = tr.chop(tmin=event.time+onset+zoom_window[0], tmax=event.time+onset+zoom_window[1]) if ampl_scaler == 'trace min/max': ampl_scale = float(max(abs(visible.get_ydata()))) elif ampl_scaler == '4*standard deviation': ampl_scale = 4*float(num.std(visible.get_ydata())) else: ampl_scale = 1. ampl_scale /= settings.gain ydata = (tr_ydata/ampl_scale)*relative_scale + y_pos ax.plot(xdata, ydata, c='black', linewidth=1., alpha=1.) if False: ax.fill_between(xdata, y_pos, ydata, where=ydata<y_pos, color='black', alpha=0.5) ax.text(zoom_window[0]*1.09, y_pos, '%1.1f' % (s.depth/1000.), horizontalalignment='right') #, fontsize=12.) if False: mod = store.config.earthmodel_1d label = 'pP' arrivals = mod.arrivals(phases=[cake.PhaseDef(label)], distances=[s.distance_to(t)*cake.m2d], zstart=s.depth) try: t = arrivals[0].t ydata_absmax = num.max(num.abs(tr.get_ydata())) marker_length = 0.5 x_marker = [t-onset]*2 y = [y_pos-(maxz-minz)*0.025, y_pos+(maxz-minz)*0.025] ax.plot(x_marker, y, linewidth=1, c='blue') ax.text(x_marker[1]-x_marker[1]*0.005, y[1], label, #fontsize=12, color='black', verticalalignment='top', horizontalalignment='right') except IndexError: logger.warning('no pP phase at d=%s z=%s stat=%s' % (s.distance_to(t)*cake.m2d, s.depth, station.station)) pass if len(traces)==0: raise Exception('No Trace found!') if len(traces)>1: raise Exception('More then one trace provided!') else: onset = 0 tr = traces[0] correction = float(settings.correction) if quantity=='displacement': tr = integrate_differentiate(tr, 'integrate') tr = settings.do_filter(tr) onset = engine.get_store(targets[0].store_id).t( 'begin', (event.depth, s.distance_to(targets[0]))) + event.time if settings.normalize: tr.set_ydata(tr.get_ydata()/max(abs(tr.get_ydata()))) ax.tick_params(axis='y', which='both', left='off', right='off', labelleft='off') y_pos = event.depth xdata = tr.get_xdata()-onset+correction tr_ydata = tr.get_ydata() *-1 visible = tr.chop(tmin=onset+zoom_window[0]+correction, tmax=onset+zoom_window[1]+correction) if ampl_scaler == 'trace min/max': ampl_scale = float(max(abs(visible.get_ydata()))) elif ampl_scaler == '4*standard deviation': ampl_scale = 4*float(num.std(visible.get_ydata())) else: ampl_scale = 1. ydata = (tr_ydata/ampl_scale * settings.gain*settings.gain_record)*relative_scale + y_pos ax.plot(xdata, ydata, c=settings.color, linewidth=1.) ax.set_xlim(zoom_window) zmax = max(test_depths) zmin = min(test_depths) zrange = zmax - zmin ax.set_ylim((zmin-zrange*0.2, zmax+zrange*0.2)) ax.set_xlabel('Time [s]') ax.text(0.0, 0.6, 'Source depth [km]', rotation=90, horizontalalignment='left', transform=fig.transFigure) #, fontsize=12.) if fill: ax.fill_between(xdata, y_pos, ydata, where=ydata<y_pos, color=settings.color, alpha=0.5) if with_onset_line: ax.text(0.08, zmax+zrange*0.1, align_phase, fontsize=14) vline = ax.axvline(0., c='black') vline.set_linestyle('--') if settings.title: params = {'array-id': ''.join(station.nsl()), 'event_name': event.name, 'event_time': time_to_str(event.time)} ax.text(0.5, 1.05, settings.title % params, horizontalalignment='center', transform=ax.transAxes) if settings.auto_caption: cax = fig.add_axes([0., 0., 1, 0.05], label='caption') cax.axis('off') cax.xaxis.set_visible(False) cax.yaxis.set_visible(False) if settings.quantity == 'displacement': quantity_info = 'integrated velocity trace. ' if settings.quantity == 'velocity': quantity_info = 'differentiated synthetic traces. ' if settings.quantity == 'restituted': quantity_info = 'restituted traces. ' captions = {'filters':''} for f in settings.filters: captions['filters'] += '%s-pass, order %s, f$_c$=%s Hz. '%(f.type, f.order, f.corner) captions['quantity_info'] = quantity_info captions['store_sampling'] = 1./store.config.deltat cax.text(0, 0, 'Filters: %(filters)s f$_{GF}$=%(store_sampling)s Hz.\n%(quantity_info)s' % captions, fontsize=12, transform=cax.transAxes) plt.subplots_adjust(hspace=.4, bottom=0.15) else: plt.subplots_adjust(bottom=0.1) ax.invert_yaxis() if settings.save_as: logger.info('save as: %s ' % settings.save_as) options = settings.__dict__ options.update({'array-id': ''.join(station.nsl())}) fig.savefig(settings.save_as % options, dpi=160, bbox_inches='tight') if show: plt.show()
def rand_source(event, SourceType="MT", pressure=None, volume=None): if event.moment_tensor is None: mt = MomentTensor.random_dc(magnitude=event.magnitude) event.moment_tensor = mt else: mt = event.moment_tensor if SourceType == "MT": source = MTSource(lat=event.lat, lon=event.lon, north_shift=event.north_shift, east_shift=event.east_shift, depth=event.depth, m6=mt.m6(), time=event.time) if SourceType == "explosion": source = ExplosionSource(lat=event.lat, lon=event.lon, north_shift=event.north_shift, east_shift=event.east_shift, depth=event.depth, time=event.time, moment=mt.moment) if SourceType == "VLVD": if volume is None or volume == 0: volume = num.random.uniform(0.001, 10000) pressure = pressure source = VLVDSource( lat=event.lat, lon=event.lon, north_shift=event.north_shift, east_shift=event.east_shift, depth=event.depth, azimuth=mt.strike1, dip=mt.dip1, time=event.time, volume_change=volume, # here synthetic volume change clvd_moment=mt.moment) # ? if SourceType == "PorePressurePointSource": source = PorePressurePointSource( lat=event.lat, lon=event.lon, north_shift=event.north_shift, east_shift=event.east_shift, depth=event.depth, pp=num.random.uniform(1, 1), # here change in pa time=event.time) # ? if SourceType == "PorePressureLineSource": source = PorePressureLineSource( lat=event.lat, lon=event.lon, north_shift=event.north_shift, east_shift=event.east_shift, depth=event.depth, azimuth=event.strike, dip=mt.dip1, pp=num.random.uniform(1, 1), # here change in pa time=event.time, length=num.random.uniform(1, 20) * km) # scaling!) if SourceType == "Rectangular": length = num.random.uniform(0.0001, 0.2) * km width = num.random.uniform(0.0001, 0.2) * km strike, dip, rake = pmt.random_strike_dip_rake() event.moment_tensor = MomentTensor(strike=strike, dip=dip, rake=rake) source = RectangularSource(lat=event.lat, lon=event.lon, north_shift=event.north_shift, east_shift=event.east_shift, depth=event.depth, strike=strike, dip=dip, rake=rake, length=length, width=width, time=event.time, magnitude=event.magnitude) return source, event